제목 그대로

사용자 친화적인 케라스(Keras)로 딥러닝(Deep Learning)을 공부할 수 있는 책이다.

 

책표지

 

4월에 출간된 따끈따끈한 책이다.

 

발행일

 

책을 볼 때에는 새하얀 종이에 컬러풀한 인쇄로 보기에 아주 좋은데,

조명 아래에서 책 사진을 찍었더니 아래처럼 빛 반사가 좀 있다(사실 책 볼 때에도 조명 반사가 좀...).

 

구성 1

 

정말 친절하게도 책의 구성에 대해서 서술형으로 설명을 해주고 있다.

 

책의 목차만 가지고 전체적인 흐름을 파악하거나 각 챕터에 대해서 이해를 하기에는 어려울 때가 있는데

이렇게 친절하게 책의 구성에 대해서 이야기 해주는 것처럼 설명이 있어서 정말 좋았다. 

 

구성 2

 

책이 쉬운 것 같으면서도 어려운데,

신경망(Neural Network)의 전체적인 내용을 책 한 권에 모두 담고 있다보니 뒷부분은 사실 좀 어려웠다.

 

(사실 내가 딥러닝에 대해 깊이 알지 못하고 앞부분만 알고 있다보니 뒷부분이 마냥 어렵게 느껴졌을 것이다!)

 

신경망

 

처음에 책을 접했을 때 좀 당황했던 것이 "ANN"이라는 용어였다.

 

ANN (Artificial Neural Network, 인공신경망) 이라는 명칭은 보통

생물학적인 신경망, 즉 Neuron(뉴런)에서 영감을 얻어 발발된 통계학적인 학습 알고리즘을 지칭하는

일반적인 용어로 알고 있었다.

 

그런데, 이 책에서는 SNN(Shallow Neural Network, 얕은 신경망), 2-layer Neural Network,

또는 그냥 NN(Neural Network)이라고 부르는 제일 단순한 NN을 지칭하는 용어로 ANN을 사용하고 있다.

 

물론, 이런 내용은 책에서 잘 설명해주고 있다.

 

그리고 이론적인 내용도 너무나 잘 설명해주고 있다.

 

ANN

 

책에서 기대하는 대상 독자는 광범위 하다.

Deep Learning을 공부하는 모두가 대상 독자이다.

 

대상 독자

 

예제 소스 코드도 너무나 잘 제공해주고 있다.

 

   - https://github.com/jskDr/keraspp_2022

 

GitHub

 

책을 살펴본 개인적인 의견으로 말하자면,

이 책은 Deep Learning을 공부하면서 직접 코드로 구현을 어떻게 하는지 살펴보고 싶은 초급자에게 적합할 것 같다.

 

책도 그렇고, 제공해주는 예제 소스도 보면

옆에서 강사님이 친절하게 설명해주는 느낌처럼 쓰여져 있다.

 

이 부분이 어떤 용도인지 왜 그렇게 되는 것인지 설명해주듯이 쓰여져 있어서

혼자서 공부하기에 적합한 것 같다.

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

+ Recent posts