사이킷런 핵심 개발자가 쓴 머신러닝과 데이터 과학 실무서

Introduction to Machine Learning with Python

파이썬 라이브러리를 활용한 머신러닝 (번역개정2판)

 

표지

 

C / C++ / Java 등의 프로그래밍 언어를 공부하고

Linux, Server, Network 등에 대해서 경험을 쌓아오며 지금까지 밥벌이를 해온 나에게

머신러닝 / 딥러닝 이라는 신문물이 등장하면서 상당한 당혹감을 느낄 수 밖에 없었다.

 

그래서 먹고 살기 위해 머신러닝에 대해 공부를 시작할 수 밖에 없었는데,

벡터, 행렬, 접선, 미분 ... 나를 괴롭히는 수학 !

이과생이지만 사실 수포자인 나에게 정말 가혹한 현실이 아닐 수 없다.

 

지금까지 Software Engineer로 먹고살아온 나로써는

이러한 수학적인 접근 보다는

라이브러리를 이용한 활용 중심으로도 접근해보고 싶다는 생각이 있었다.

 

이에 걸맞는 책이 바로 이 책이 아닐가 싶다.

 

번역개정2판 1쇄

 

나와 같은 Needs가 있는 사람이 적지 않았던 것 같다.

2017년 초판에 이어 개정판을 한 번도 아니고 두 번째나 발행 한 것을 보면 말이다.

 

번역개정2판 특징

 

그런데, 개정을 해주는 것만으로도 감지덕지인데, 그냥 그저 그런 수정판이 아니다.

scikit-learn 1.x 버전에 맞춰 업데이트 된 것 뿐만 아니라 내용도 더 추가가 되었다.

 

구성

 

오래된 이미 검증된 책이라 그런지

책의 전체적인 구성도 너무나 잘 요약해서 설명해주고 있다.

 

저자 인터뷰

 

한국어판을 위한 저자 인터뷰도 실려있다.

형식적인 인터뷰가 아니라 독자들의 질문에 대한 답까지 포함된

저자의 솔직한 심경도 그대로 담겨진 그런 인터뷰다.

 

한국어판 부록

 

목차를 보면 한국어판에서 추가된 항목을 볼 수 있다.

Chapter 한 개당 하나 정도씩 추가 되어 있고, 그 내용도 정말 충실하다.

 

술술

 

개조식 서술 방식이 아니라 이야기 하는 방식으로 풀어나가는 책 내용도 정말 마음에 든다.

말 그대로 술술 읽어나가며 공부할 수 있기에 책에 대한 부담감이 훨씬 적게 느껴지기 때문이다.

 

 

그리고 이 책의 가장 큰 장점 중 하나라고 꼽고 싶은 예제 파일 !!!

  - https://github.com/rickiepark/intro_ml_with_python_2nd_revised

 

옮긴이 박해선님이 훨씬 더 좋게 업그레이드 해준 내용을 담고 있다.

 

 

최근 딥러닝의 인기에 조금 버림받은 것 같은 느낌이 들긴하지만

사실 대부분의 문제는

scikit-learn으로 구현되는 머신러닝으로 해결하는 것이 훨씬 더 효율적이지 않을까 한다.

 

머신러닝 또한 수학적인 배경을 갖고 깊이 공부하는 것이 중요하긴 하지만

활용을 중심으로 scikit-learn 라이브러리 활용에 대해 공부하는 것도 괜찮은 접근일 것이다.

 

 

요즘 공부할 것이 너무 많아 걱정이긴 하지만

꼭 공부해야할 책 목록에 이 책을 꼭 포함시킬 것이다 !!!

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

 

최근 많은 분들이 관심을 갖고 있는 "MLOps"는

"Machine Learning"과 "DevOps"가 합쳐진 것으로 지속적인 학습과 배포가 이루어지도록 하는 것을 의미한다.

 

이런 `MLOps`를 공부하기에 앞서서 먼저 알아야 할 것이

바로 "머신러닝 엔지니어링 (MachineLearning Engineering)"이다.

 

그리고, "머신러닝 엔지니어링 (MachineLearning Engineering)"에 대해서

제대로 공부할 수 있는 책이 나왔다.

 

표지

 

책 표지가 너무 깔끔하게 잘 나온 것 같다~^^

 

1쇄

 

21년의 마지막날 하루 앞두고 발행되었다!!!

 

 

MachineLearning에 대한 책들을 보면 거의 대부분 Modeling에 집중되어 있다.

하지만, 실제 이를 적용하기 위해서는 Modeling만 알아서는 충분하지 않다.

이를 어떻게 응용할 것인지, 어떻게 적용할 것인지가 중요하다.

 

그렇기에 책의 서두를 보면, 이 책의 정체성에 대해서 잘 설명해주고 있다.

 

"Applied MachineLearning"

 

applied machinelearning

 

책의 구성을 보면 프로젝트의 시작 전부터 하나씩 친절하게 설명을 해주고 있다.

 

Chapter 2

 

기술적인 부분에 대해서만 설명해주는 것이 아니라

어떤 데이터가 좋은 데이터인지, 어떤 전략으로 샘플링을 해야하는지와 같이

정말 꼼꼼하게 잘 설명해주고 있다.

 

Chapter 3

 

당연한 이야기이지만, MachineLearning에서 가장 중요한 것은 데이터이기에

데이터에 대해서 상당한 분량을 투자해서 잘 설명해주고 있다.

 

Chapter 9

 

데이터들을 수집해서 잘 정리하고 모델링을 해서

잘 만들어진 모델을 멋지게 서빙까지 하는 과정에 대해서 설명을 잘 해준다.

 

 

하지만, 이 책에서는 ML Engineering에 대한 이론적인 측면에서 설명을 해주고 있지

실제 사용되는 도구들을 통해 구현적인 측면에서는 언급해주고 있지 않다.

 

서빙

 

머신러닝 파이프라인에 있어서 각 단계별로 어떤 것들을 염두에 두어야 하는지

어떤 것들을 알고 있어야 하는지에 대한 이론을 설명해주고 있다.

 

즉, 그래서 실제로 어떤 도구들을 어떻게 구축해야할지를 고민하시는 분들에게는 적합하지 않고

머신러닝을 실제 업무에 적용하기 위해 어떤 단계들로 구성이 되어있는지

각 단계별로 어떤 것들을 고민하고 조심해야하는지를 알고 싶으신 분들에게 적합할 것 같다.

 

 

※ 제이펍 서평단 활동을 위해 지급 받은 도서에 대한 리뷰입니다.

 

반응형

 

머신러닝에 대한 이론 공부만 해서는 실무에서 적용할 때 무쓸모가 될 수도 있기에 😥

실무에 적용을 어떻게 해야하는지에 대해서 살펴보고자 찾던 중 찾게 된 도서 !! 😍

 

"Machine Learning for Business"

 

책 표지

 

왠지 멋지게 생긴 선장 같은 아저씨가 더욱 더 눈길을 잡아끌었다.

 

하지만, 보험약관 처럼 놓친 것이 있었으니...

"아마존 세이지메이커와 주피터를 활용한 빠르고 효과적인 머신러닝 활용법"

 

어쩐지 추천의 글에 있는 2분 모두 AWS코리아 소속이시더라니... 😁

 

 

뭐 하지만, 회사에서도 퍼블릭 클라우드 사용량을 보면 대부분 AWS를 쓰고 있고,

글로벌 트렌드를 봐도 뭐 AWS가 대세이기는하니 ...

이번 기회에 말로만 듣던 세이지메이커 한 번 써보지 뭐 !!! 😑

 

 

우선 AWS 가입부터 해야하는데,

친절하게도 책의 뒷 부분에 있는 '부록'에

"AWS 가입"부터 파일 저장을 위한 S3 설정 및 사용방법, 세이지메이커 설정 등에 대해서 친절히 알려준다.

 

Amazon SageMaker

 

그런데, AWS 서비스 쓰려면 돈드는 것 아닌가!?

본래 처음 가입하면 1년간 어느 정도 사용할 수 있는 무료 정책이 있다지만

나는 이미 무료 1년이 지났는데... 그래서 홈페이지 찾아가봤다.

 

SageMaker 요금제

리전을 서울로 바꾸지는 말자.

시간당 요금이 여기보다 비싸다.

 

그런데, 실제 사용하면 얼마쯤 나온다는 것일까?

 

SageMaker 요금 예제

 

2시간 정도 쓰면 500원쯤 지불한다는거네... 음... 나의 똑똑해짐을 위해 이 정도는 투자해줘도 될 것 같다. 😎

 

뭐, 기본 환경 구축은 이 정도로 하고...

 

 

 

책의 내용을 살펴보자.

 

도서 구성

 

일반적인 회사의 운영 영역을 시나리오로 해서 구성이 되어있다.

 

각 시나리오에 따라 데이터가 제공되고

그 데이터를 모델에 적합한 형태로 가공도 하고

학습/검증/테스트 용도에 맞게 데이터셋 분리도 해보고

시나리오와 데이터에 맞는 머신러닝 알고리즘을 선택해서 학습도 한다.

심지어 AWS 비용 절감을 위한 관리 방법까지도 알려준다.

 

 

다만, 이렇게 실제 머신러닝을 비즈니스에 적용하기 위한 과정을

AWS SageMaker를 이용해서 적용하는 과정에 대해서 설명을 하다보니

머신러닝에 대해서는 많은 분량으로 설명해주지는 않는다.

 

하지만 이 부분은 절대 이 책의 단점이 아니다!!!

 

이 책은 분명히 타이틀에 적어놓은 것 처럼

"비즈니스 머신러닝"에 대한 책이다!!!

 

또한,

"아마존 세이지메이커와 주피터를 활용한 빠르고 효과적인 머신러닝 활용법"에 대해서 알려주는 책이다.

 

 

그리고, 이 책의 경우 원서에는 없는 설명도 포함되어 있다.

 

한국어판 부록

 

IT 서적의 안타까운 부분인데... 대상 시스템이 업그레이드가 되어버려 버전이 맞지 않게 되는 것이다.

하지만, 친절하게도 버전을 맞출 수 있는 방법을 가이드해주고 있다.

 

 

머신러닝에 대해서 기본적인 사항들을 공부하신 분들에게 추천하고픈 책이다.

전체적으로 어떤 흐름으로 비즈니스에 적용하는지 살펴보기에 충분히 괜찮은 책이다.

 

 

※ 이 책은 한빛출판네트워크의 '나는 리뷰어다' 이벤트를 통해 제공 받은 도서입니다.

반응형

+ Recent posts