Chapter 06

 

어느덧 6주차까지 왔다. 혼공 완주 !!!

스스로에게 칭찬해줘야지 !!! 쓰담~ 쓰담~

 

▶ 내용 요약

06-1 객체지향 API로 그래프 꾸미기

- pyplot 방식과 객체지향 API 방식

 

 

- 그래프에 한글 출력하기

  . 한글 폰트가 필요하기 때문에, 나눔폰트를 설치해야 한다.

  . 예제에서는 구글 코랩에 대해서만 설명되어 있지만, 일반적인 Ubuntu 환경에서도 적용된다.

 

 

  . 사용할 수 있는 폰트 목록을 확인해볼 수도 있다.

  . 사용할 폰트를 지정할 수도 있고, 크기도 정할 수 있다.

 

 

  . 잘 되는지 확인해보자.

 

 

- 출판사별 발행 도서 개수 산점도 그리기

  . 교재와는 다르게, 내가 이용하는 도서관의 데이터로 진행해봤다.

 

 

  . 모든 데이터가 아닌 Top 30 출판사를 뽑아서 사용한다.

 

 

  . 산점도를 그리면 된다!

 

 

  . Marker 크기를 확인하거나 설정을 할 수도 있다.

  . 그냥 점이 아니라 크기에 따라 의미를 부여해보자. (대출건수)

 

 

- 맷플롯립의 다양한 기능으로 그래프 개선하기

 

 

 

 

06-2 맷플롯립의 고급 기능 배우기

- 실습준비하기

  . 한글 폰트 설치 및 도서관 CSV 파일 읽어오기 (앞에서 진행했던 내용 활용)

 

- 하나의 피겨에 여러 개의 선 그래프 그리기

  . 대출건수 크기가 유사한 출판사 2개를 선택해서 그려보자

 

 

  . 레전드를 표현하거나 모든 출판사 정보를 그려보거나 해보자.

 

 

  . 피봇 테이블을 이용해서 데이터를 만들어서 stackplot으로 그려보자.

 

 

 

- 하나의 피겨에 여러 개의 막대 그래프 그리기

 

 

  . 나란히 나오도록 할 수도 있다.

 

 

  . 2개의 bar 그래프를 합쳐서 그리는 2가지 방법이 있다.

 

 

 

  . 데이터 값 누적한 것을 그려보기 위해서 데이터를 먼저 확인해보자

 

 

  . cumsum()을 이용해서 누적 데이터를 만들 수 있다.

 

 

- 원 그래프 그리기

  . 10개 출판사를 뽑아서 pie를 그리면 된다.

 

 

  . startangle 및 여러 옵션들을 줘서 멋진 원 그래프를 만들 수 있다.

 

 

- 여러 종류의 그래프가 있는 서브플롯 그리기

  . 앞에서 살펴본 것들의 종합판이다!

 

 

  . 한 방에 모두 그려진다!!!

 

 

- 판다스로 여러 개의 그래프 그리기

  . DataFrame에서 바로 그래프를 그릴 수도 있다.

 

 

 

 

▶ 기본 미션

p.344의 손코(맷플롯립의 컬러맵으로 산점도 그리기)를 코랩에서 그래프 출력하고 화면 캡쳐하기

 

→ 코랩이 아닌 로컬 환경에서 실행해봤다 ^^

 

 

 

 

▶ 선택 미션

p.356~359의 스택 영역 그래프를 그리는 과정을 정리하기

 

① 기본 데이터 준비

  - 작업 준비 과정이다.

 

 

② 그래프로 표현할 데이터 만들기

  - Top30 출판사 기준으로 "출판사 / 발행년도 / 대출건수"를 추출하고,

  - "출판사 / 발행년도" 기준으로 그룹핑을 하면서, 대출건수는 sum()을 했다.

  - 전체적으로 reset_index()까지 해줬다.

 

 

③ pivot_table()

  - 발행년도를 X축으로 하고, 출판사를 Y축으로 하고, 대출건수를 데이터로 하는 테이블을 만든다.

 

 

④ get_level_values()

  - pivot_table()을 사용했다보니, column이 다단으로 구성되어 있다.

  - 이런 경우 원하는 레벨의 값만 추출하기 위해 get_level_values()를 사용했다.

 

 

⑤ stackplot()

  - 이제 그래프를 그리면 된다.

 

 

우와~~~ 다했다!!!!

반응형

Chapter04. 데이터 요약하

 

정신없이 달리다보니 어느덧 반환점을 돌고 있다. 앗싸~!!!

 

▶ 내용 요약

04-1. 통계로 요약하기

- df.describe()
  . 25%/50%/75% 가 아닌 다른 범위를 알고 싶을 때 : df.describe(percentiles=[0.3, 06, 0.9])
  . object 컬럼의 값 통계를 보고 싶을 때 : df.describe(include='object')


- 일반적인 수학 함수
  . df.mean() / df.median() / df.max() / df.min()


- df.quantile() / sr.quantile() : 분위수
  . df.quantile(0.25)
  . df.quantile([0.25, 0.5, 0.75])


- df.var() : 분산
  . 평균을 먼저 구한 뒤, 평균과 각 데이터 차이를 제곱해서 더한 뒤 데이터 갯수로 나눔


- df.std() : 표준 편차
  . 분산에 루트를 씌운 값

 

import numpy as np

diff = df['대출건수'] - df['대출건수'].mean()
np.sqrt( np.sum(diff**2) / (len(df) - 1) )


- df.mode() : 최빈값. 제일 자주 나오는 값


04-2. 분포 요약하기

- 산점도 : plt.scatter(df['column1'], df['column2'], alpha=0.1)


- 히스토그램
  . plt.hist(df['column1'], bins=5) : y축 폭을 5로 해서 그려라
  . plt.historgram_bin_edge(df['column1'], bins=5)

 

- 상자 수염 그림
  . 상자에서부터 1.5배 IQR 거리 안에서 가장 멀리 떨어져 있는 것 까지 표시

 

plt.boxplot( df[ ['column1', 'column2'] ])
plt.yscale('column')
plt.show()

 

 

▶ 기본 미션

p. 279의 확인 문제 5번 풀고 인증하기

 

기본 미션

 

우와 문제 스케일이 좀 크다 ^^

 

① 데이터 확보

  - https://www.data4library.kr/ 접속해서 데이터를 확보하자.

  - '데이터 제공' 탭을 통해서 데이터를 내려 받을 수 있다.

 

도서관 정보나루

 

② 데이터 읽어들이기

  - 다운로드 받은 데이터를 불러들여서 기본 모양을 살펴보자.

  - 특히, encoding을 신경써야 한다 !!! (정부차원에서 이거 그냥 UTF-8 쓰도록 강제해야하는 것 아닌가)

pd.read_csv()

 

③ Column 상태 확인 및 수정

  - '발행년도'를 가지고 통계를 내야 하는데, 수치형이 맞는지 확인하고, 아니아면 변경을 해야한다.

 

astype()

 

  - 그런데, 위와 같이 에러가 발생한다.

  - 이유는 제일 밑에 나와 있다. "2022(2021)"처럼 입력되어 있는 데이터가 있다보니 casting이 안되는 것이다.

 

  - '("를 포함한 데이터가 얼마나 있는지 확인해보고, '(*)' 부분을 삭제하도록 하자.

 

replace()

 

  - 다시 casting 해보자.

 

error

 

  - 또 에러가 나온다. 숫자가 아닌 데이터가 많은 것 같다.

  - 확인해보자.

 

숫자가 아닌 데이터

 

  - 이거.... 쉽게 갈 수 있는 길을 너무 어렵게 가는 것 같은데....

  - 일단 '.'을 포함한 것들이 많아 보이니 이를 먼저 처리해보자.

 

replace()

 

  - 아직도 243개나 남았다.

  - 데이터를 한 번 더 확인해보고 처리해보자.

 

replace()

 

  - 이제 85개 밖에 안남았다.

  - 데이터 확인해보고, 숫자가 아닌 것들을 전부 날려버리자.

replace()

 

  - astype()을 적용하기 위해서는 ''(공백), NaN 값이 있으면 안된다.

  - ''(공백)을 NaN으로 변환하고, NaN을 모두 0으로 변환해 astype()을 돌리자.

 

astype()

 

  - 드디어 int64 dtype으로 변환되었다.

 

④ draw Histogram

  - 이제 Boolean Indexing을 이용해서 원하는 범위를 한정하고, histogram을 그리면 된다.

histogram

 

 

▶ 선택미션

Ch.04(04-1)에서 배운 8가지 기술통계량(평균, 중앙값, 최솟값, 최댓값, 분위수, 분산, 표준편차, 최빈값)의 개념을 정리하기

 

일반적인 개념 정의는 너무나 잘 정리된 내용이 여기 저기 많이 있으므로 ^^

앞에서 만든 데이터를 가지고 직접 확인해보면서 살펴보겠다.

 

발행년도에 따른 대출건수가 어떻게 되는지를 scatter() 로 표현해봤다.

 

scatter()

 

8가지 기술통계량을 직접 확인해보자.

 

기술통계량

 

① max / ② min : 해당 값의 최댓값 / 최솟값

③ mean / ④ median

    . 평균값은 전체 데이터의 합을 전체 갯수로 나눈값이고,

    . 중앙값은 데이터를 줄 세웠을 때 중간 위치에 해당하는 실제값을 의미한다.

⑤ quantile

    . 분위수를 알려주는 것인데, 일반적으로는 IQR(InterQuartile Range, 사분범위) 사용

    . 명시적으로 원하는 분위수를 확인할 수도 있다.

⑥ var / ⑦ std

    . 분산은 각 데이터와 평균의 차이의 제곱의 총합을 전체 데이터 갯수만큼 나눠준 값이다.

    . 표준편차는 분산에 루트를 씌운 값이다.

⑧ mode

    . 최빈값은 데이터 값 중에서 가장 많은 빈도로 나오는 것을 의미한다.

 

 

우리 모두 파이팅 !!!

반응형

 

파이썬 라이브러리를 활용한 데이터 분석 2판

 

표지

 

이번에 보게된 책은

"데이터 분석을 위해 파이썬 라이브러리를 사용하는 방법"을

알려주는 교과서와 같은 유명한 책이다.

 

 

교과서와 같은 책이라고 해서

오래된 책이라고 생각할 수도 있는데

오래된 책 맞다.

 

그렇다고 해서 'out of date' 된 책은 아니다.

 

제목에도 써있는 것처럼

"2판"으로 나왔기 때문이다.

 

2판 5쇄

 

거기에다가 5쇄까지 찍었다.

유명한 책인 것은 분명하다.

 

2판

 

결론적으로 2019년에 2판으로 업데이트 했고

내용은 지금도 유효하다!!!

 

 

 

"학습 환경"

이 책에서 제안하는 학습 환경은

Anaconda 설치해서

IPython 또는 Jupyter Notebook

사용하는 것이다.

 

IPython & Jupyter

 

Jupyter Notebook의 근간이 IPython 이라는 것을

처음 알았다 @.@

 

 

추가적으로 IDE(통합 개발 환경)를 소개해주기는 하는데,

결국은 IPython 또는 Jupyter Notebook을

사용하는 것을 권장하고 있다.

IDE

VSCode(Visual Studio Code) 언급이 없는 것으로 보아

2019년 이전에 작성한 책이 맞는 것 같다 ^^

하지만, 공부에는 지장이 없다 !!!

 

 

 

책 내용은

기본 자료형부터 설명을 시작하면서

Numpy와 Pandas를 중심으로

너무나 잘 설명해주고 있다.

 

책 내용도 훌륭하지만,

코드 예제 데이터는 꼭 찾아보길 바란다.

https://github.com/wesm/pydata-book

 

단순히 샘플 코드만 있는 것이 아니라

Jupyter Notebook 파일로 제공해주면서

설명하는 내용까지 담겨있다.

 

예제 코드

 

최근 많은 분들이 계속 관심을 많이 갖고 있는

Machine Learning, Deep Learning, Big Data 등의

공부를 하게 되면

반드시 거쳐가는 것이 바로

Python 특히, Numpy & Pandas 라이브러리에 대해서

공부를 하게 된다.

 

이 때, 정말 많은 도움이 될 책으로 추천할 수 있을 것 같다!!!

 

 

 

이 책을 보면서 특히 호감이 들었던 부분이

바로 "Chapter 11. 시계열" 이다.

 

시계열 데이터

 

개인적으로 Python으로 작업하면서

많은 고생을 했던 (즉, 시간을 엄청 많이 빼았겼던)

부분이 바로 "날짜" & "시간" 이었다.

 

즉, "시계열" 데이터 인데,

이것을 하나의 챕터로 깊게 다뤄주고 있어서

정말 감동했다.

 

 

 

이 책에 대해서 짧게 서평하자면

Python으로 데이터를 다루고 싶은 모든 분들에게 추천하는 책이다.

 

Numpy, Pandas는 물론이고

기본 내장 데이터형부터 시작해서

고급 데이터 분석까지 차분히 설명해주고 있다.

 

 

 "한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형


머신러닝에 대해서 공부를 한다고 하면,

예전에는 (아직도) R 등과 같은 수학에 맞춰진 언어를 소개하기도 하지만 대부분은 Python을 추천한다.


사실은 Python이라는 언어 자체가 중요한 것이 아니라

머신러닝을 할 때 필요한 많은 기능(?)들을 제공해주는 라이브러리들이 중요한데

Pandas, Numpy 라이브러리가 워낙에 잘 되어 있어서 Python을 사용하라고 하는 것이다.

물론 Python이라는 언어 자체도 매력적이긴 하지만...



이에 대해서 공부를 하고자 하는 분들에게 드리는 좋은 정보~


Google에서 무려 한국어로 제공해주는 "머신러닝 단기집중과정" 온라인 강좌

https://developers.google.com/machine-learning/crash-course


그 중에서도 Pandas에 대해서 직접 실습해가며 배울 수 있는 정말 멋진 과정

- https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=pandas-colab&hl=ko



그런데, 위의 내용 말고도 좋은 강좌가 하나 더 있다.

머신러닝에 대해서 공부하다보면 누구나 알게 되는 Kaggle !!


 Kaggle에서도 Pandas에 대해서 친절한 강좌를 제공해준다.

https://www.kaggle.com/learn/pandas


4시간이면 끝낼 수 있단다~!! ^^ (필자는 멍청해서 4일은 걸릴듯... ㅠㅜ)




모두들 즐거운 머신러닝 공부시간 되세요~


반응형


Ubuntu에서 Python3 환경 셋업을 한 뒤에 (https://www.whatwant.com/entry/Python3-환경-만들기-버전-변경하기-in-Ubuntu)

pandas를 사용해보고자 했더니, 에러가 발생...


Traceback (most recent call last):

  File "./test.py", line 4, in <module>

    import pandas as pd

ModuleNotFoundError: No module named 'pandas'




0. 현재 환경


    - 아래 작업을 실행한 환경은 다음과 같다


$ lsb_release -a


No LSB modules are available.

Distributor ID: Ubuntu

Description:    Ubuntu 18.04.3 LTS

Release:        18.04

Codename:       bionic



$ python --version


Python 3.6.9


    - Python 3.7 버전으로 했을 경우에는 아래와 같이 진행하면 충돌(?)이 있다. 3.6 버전으로 진행하길...




1. pandas 설치하기


    - 뭔가 무지막지하게 많이 설치된다.


$ sudo apt-get install python3-pandas


Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

  blt fonts-lyx javascript-common libaec0 libblas3 libblosc1 libgfortran4 libhdf5-100 libjbig0 libjpeg-turbo8 libjpeg8 libjs-jquery libjs-jquery-ui liblapack3 liblcms2-2 libsnappy1v5 libsz2 libtcl8.6 libtiff5 libtk8.6 libwebp6 libwebpdemux2

  libwebpmux3 libxft2 libxrender1 libxss1 python-matplotlib-data python-tables-data python3-bs4 python3-cycler python3-dateutil python3-decorator python3-html5lib python3-lxml python3-matplotlib python3-numexpr python3-numpy python3-olefile

  python3-pandas-lib python3-pil python3-pyparsing python3-scipy python3-tables python3-tables-lib python3-tk python3-tz python3-webencodings tk8.6-blt2.5 ttf-bitstream-vera x11-common

Suggested packages:

  blt-demo apache2 | lighttpd | httpd libjs-jquery-ui-docs liblcms2-utils tcl8.6 tk8.6 python-cycler-doc python3-genshi python3-lxml-dbg python-lxml-doc dvipng ffmpeg gir1.2-gtk-3.0 ghostscript inkscape ipython3 librsvg2-common

  python-matplotlib-doc python3-cairocffi python3-gi-cairo python3-gobject python3-nose python3-pyqt4 python3-sip python3-tornado texlive-extra-utils texlive-latex-extra ttf-staypuft gfortran python-numpy-doc python3-dev python3-numpy-dbg

  python-pandas-doc python-pil-doc python3-pil-dbg python-pyparsing-doc python-scipy-doc python-tables-doc python3-netcdf4 vitables tix python3-tk-dbg

The following NEW packages will be installed:

  blt fonts-lyx javascript-common libaec0 libblas3 libblosc1 libgfortran4 libhdf5-100 libjbig0 libjpeg-turbo8 libjpeg8 libjs-jquery libjs-jquery-ui liblapack3 liblcms2-2 libsnappy1v5 libsz2 libtcl8.6 libtiff5 libtk8.6 libwebp6 libwebpdemux2

  libwebpmux3 libxft2 libxrender1 libxss1 python-matplotlib-data python-tables-data python3-bs4 python3-cycler python3-dateutil python3-decorator python3-html5lib python3-lxml python3-matplotlib python3-numexpr python3-numpy python3-olefile

  python3-pandas python3-pandas-lib python3-pil python3-pyparsing python3-scipy python3-tables python3-tables-lib python3-tk python3-tz python3-webencodings tk8.6-blt2.5 ttf-bitstream-vera x11-common

0 upgraded, 51 newly installed, 0 to remove and 0 not upgraded.

Need to get 35.7 MB of archives.

After this operation, 160 MB of additional disk space will be used.

Do you want to continue? [Y/n]




2. 테스트 코드


    - 잘 동작하는지 살펴보자. 샘플은 Kaggle의 내용을 참조했다.


import pandas as pd

import pprint


pp = pprint.PrettyPrinter(indent=4)


if __name__ == "__main__":


    fruits = pd.DataFrame( [[30, 21]], columns=['Apples', 'Bananas'] )

    pp.pprint( fruits )


    exit(0)


파이팅~!!!

반응형

+ Recent posts