제목 그대로

사용자 친화적인 케라스(Keras)로 딥러닝(Deep Learning)을 공부할 수 있는 책이다.

 

책표지

 

4월에 출간된 따끈따끈한 책이다.

 

발행일

 

책을 볼 때에는 새하얀 종이에 컬러풀한 인쇄로 보기에 아주 좋은데,

조명 아래에서 책 사진을 찍었더니 아래처럼 빛 반사가 좀 있다(사실 책 볼 때에도 조명 반사가 좀...).

 

구성 1

 

정말 친절하게도 책의 구성에 대해서 서술형으로 설명을 해주고 있다.

 

책의 목차만 가지고 전체적인 흐름을 파악하거나 각 챕터에 대해서 이해를 하기에는 어려울 때가 있는데

이렇게 친절하게 책의 구성에 대해서 이야기 해주는 것처럼 설명이 있어서 정말 좋았다. 

 

구성 2

 

책이 쉬운 것 같으면서도 어려운데,

신경망(Neural Network)의 전체적인 내용을 책 한 권에 모두 담고 있다보니 뒷부분은 사실 좀 어려웠다.

 

(사실 내가 딥러닝에 대해 깊이 알지 못하고 앞부분만 알고 있다보니 뒷부분이 마냥 어렵게 느껴졌을 것이다!)

 

신경망

 

처음에 책을 접했을 때 좀 당황했던 것이 "ANN"이라는 용어였다.

 

ANN (Artificial Neural Network, 인공신경망) 이라는 명칭은 보통

생물학적인 신경망, 즉 Neuron(뉴런)에서 영감을 얻어 발발된 통계학적인 학습 알고리즘을 지칭하는

일반적인 용어로 알고 있었다.

 

그런데, 이 책에서는 SNN(Shallow Neural Network, 얕은 신경망), 2-layer Neural Network,

또는 그냥 NN(Neural Network)이라고 부르는 제일 단순한 NN을 지칭하는 용어로 ANN을 사용하고 있다.

 

물론, 이런 내용은 책에서 잘 설명해주고 있다.

 

그리고 이론적인 내용도 너무나 잘 설명해주고 있다.

 

ANN

 

책에서 기대하는 대상 독자는 광범위 하다.

Deep Learning을 공부하는 모두가 대상 독자이다.

 

대상 독자

 

예제 소스 코드도 너무나 잘 제공해주고 있다.

 

   - https://github.com/jskDr/keraspp_2022

 

GitHub

 

책을 살펴본 개인적인 의견으로 말하자면,

이 책은 Deep Learning을 공부하면서 직접 코드로 구현을 어떻게 하는지 살펴보고 싶은 초급자에게 적합할 것 같다.

 

책도 그렇고, 제공해주는 예제 소스도 보면

옆에서 강사님이 친절하게 설명해주는 느낌처럼 쓰여져 있다.

 

이 부분이 어떤 용도인지 왜 그렇게 되는 것인지 설명해주듯이 쓰여져 있어서

혼자서 공부하기에 적합한 것 같다.

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

 

사이킷런 핵심 개발자가 쓴 머신러닝과 데이터 과학 실무서

Introduction to Machine Learning with Python

파이썬 라이브러리를 활용한 머신러닝 (번역개정2판)

 

표지

 

C / C++ / Java 등의 프로그래밍 언어를 공부하고

Linux, Server, Network 등에 대해서 경험을 쌓아오며 지금까지 밥벌이를 해온 나에게

머신러닝 / 딥러닝 이라는 신문물이 등장하면서 상당한 당혹감을 느낄 수 밖에 없었다.

 

그래서 먹고 살기 위해 머신러닝에 대해 공부를 시작할 수 밖에 없었는데,

벡터, 행렬, 접선, 미분 ... 나를 괴롭히는 수학 !

이과생이지만 사실 수포자인 나에게 정말 가혹한 현실이 아닐 수 없다.

 

지금까지 Software Engineer로 먹고살아온 나로써는

이러한 수학적인 접근 보다는

라이브러리를 이용한 활용 중심으로도 접근해보고 싶다는 생각이 있었다.

 

이에 걸맞는 책이 바로 이 책이 아닐가 싶다.

 

번역개정2판 1쇄

 

나와 같은 Needs가 있는 사람이 적지 않았던 것 같다.

2017년 초판에 이어 개정판을 한 번도 아니고 두 번째나 발행 한 것을 보면 말이다.

 

번역개정2판 특징

 

그런데, 개정을 해주는 것만으로도 감지덕지인데, 그냥 그저 그런 수정판이 아니다.

scikit-learn 1.x 버전에 맞춰 업데이트 된 것 뿐만 아니라 내용도 더 추가가 되었다.

 

구성

 

오래된 이미 검증된 책이라 그런지

책의 전체적인 구성도 너무나 잘 요약해서 설명해주고 있다.

 

저자 인터뷰

 

한국어판을 위한 저자 인터뷰도 실려있다.

형식적인 인터뷰가 아니라 독자들의 질문에 대한 답까지 포함된

저자의 솔직한 심경도 그대로 담겨진 그런 인터뷰다.

 

한국어판 부록

 

목차를 보면 한국어판에서 추가된 항목을 볼 수 있다.

Chapter 한 개당 하나 정도씩 추가 되어 있고, 그 내용도 정말 충실하다.

 

술술

 

개조식 서술 방식이 아니라 이야기 하는 방식으로 풀어나가는 책 내용도 정말 마음에 든다.

말 그대로 술술 읽어나가며 공부할 수 있기에 책에 대한 부담감이 훨씬 적게 느껴지기 때문이다.

 

 

그리고 이 책의 가장 큰 장점 중 하나라고 꼽고 싶은 예제 파일 !!!

  - https://github.com/rickiepark/intro_ml_with_python_2nd_revised

 

옮긴이 박해선님이 훨씬 더 좋게 업그레이드 해준 내용을 담고 있다.

 

 

최근 딥러닝의 인기에 조금 버림받은 것 같은 느낌이 들긴하지만

사실 대부분의 문제는

scikit-learn으로 구현되는 머신러닝으로 해결하는 것이 훨씬 더 효율적이지 않을까 한다.

 

머신러닝 또한 수학적인 배경을 갖고 깊이 공부하는 것이 중요하긴 하지만

활용을 중심으로 scikit-learn 라이브러리 활용에 대해 공부하는 것도 괜찮은 접근일 것이다.

 

 

요즘 공부할 것이 너무 많아 걱정이긴 하지만

꼭 공부해야할 책 목록에 이 책을 꼭 포함시킬 것이다 !!!

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

 

컴퓨터공학 전공한 분들도 읽어야 하는 AI에 대한 인문학 도서!

사실 우리 파트장님, 팀장님에게 추천하고 싶은 책!

 

표지

 

어떻게 ML(머신러닝)을 하는지, PyTorch를 어떻게 사용하는지에 대한 책이 아니다.

목차 1

 

AI는 무엇이며, 역사는 어떻게 되었는지

그리고 Machine Learning과 Deep Learning은 어떤 차이가 있는지 등에 대해서 친절하게 쉽게 이야기해주는 책이다.

 

목차 2

 

책의 뒤에서는 AI로 어떤 것까지 가능하며

산업 분야별로 AI가 어떻게 도입될 것인지 어떻게 활용하는지에 대한 내용도 있다.

 

전문가 시스템

 

설명을 위해 중간 중간 그림도 삽입되어 있는데,

부담없이 보고 읽고 이해하기 쉽게 잘 정리되어 있다.

 

겨울

 

풀컬러는 아니라서 조금 아쉽기는 하지만 (개인적인 취향으로 알록 달록한 것을 좋아해서 ^^)

그래도 보기에 괜찮다.

 

그리고 책의 구성이 질문 형식의 화두를 던지고

그에 대한 답을 하는 방식으로 친절하게 설명하는 방식이라서 읽고 이해하기가 수월하다.

 

 

개발자로써 최근 AI/ML에 대해서 공부를 하고 있기에

Tensorflow, PyTorch, CNN, RNN 등에 대해서 알려주는 책들은 많이 봤지만

이처럼 AI에 대한 전반적인 설명이나 산업에 있어서의 AI에 대한 트렌드를 설명해주는 책은 처음이었다.

 

이 책을 보면서 계속 머릿속에 드는 생각은

AI/ML에 대해서 공부를 따로 하지 않은

우리 윗분들이 꼭 한 번 읽어봤으면 좋겠다라는 것이었다.

 

분명 기준 S/W 개발과는 차이가 있는 분야임에도 불구하고

AI/ML 과제를 S/W 개발 경험 밖에 없는 분들이 PL 역할을 하곤 한다.

 

이런 분들에게 이제와서 AI/ML 공부를 하라고 하는 것은 사실 무리이고

최소한 이 책에서 나온 정도의 상식은 갖췄으면 하는 바램에

이 책을 추천한다.

 

물론 AI/ML 개발 또는 연구하는 분들에게도 추천하는 책이다!

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

반응형

 

최근 많은 분들이 관심을 갖고 있는 "MLOps"는

"Machine Learning"과 "DevOps"가 합쳐진 것으로 지속적인 학습과 배포가 이루어지도록 하는 것을 의미한다.

 

이런 `MLOps`를 공부하기에 앞서서 먼저 알아야 할 것이

바로 "머신러닝 엔지니어링 (MachineLearning Engineering)"이다.

 

그리고, "머신러닝 엔지니어링 (MachineLearning Engineering)"에 대해서

제대로 공부할 수 있는 책이 나왔다.

 

표지

 

책 표지가 너무 깔끔하게 잘 나온 것 같다~^^

 

1쇄

 

21년의 마지막날 하루 앞두고 발행되었다!!!

 

 

MachineLearning에 대한 책들을 보면 거의 대부분 Modeling에 집중되어 있다.

하지만, 실제 이를 적용하기 위해서는 Modeling만 알아서는 충분하지 않다.

이를 어떻게 응용할 것인지, 어떻게 적용할 것인지가 중요하다.

 

그렇기에 책의 서두를 보면, 이 책의 정체성에 대해서 잘 설명해주고 있다.

 

"Applied MachineLearning"

 

applied machinelearning

 

책의 구성을 보면 프로젝트의 시작 전부터 하나씩 친절하게 설명을 해주고 있다.

 

Chapter 2

 

기술적인 부분에 대해서만 설명해주는 것이 아니라

어떤 데이터가 좋은 데이터인지, 어떤 전략으로 샘플링을 해야하는지와 같이

정말 꼼꼼하게 잘 설명해주고 있다.

 

Chapter 3

 

당연한 이야기이지만, MachineLearning에서 가장 중요한 것은 데이터이기에

데이터에 대해서 상당한 분량을 투자해서 잘 설명해주고 있다.

 

Chapter 9

 

데이터들을 수집해서 잘 정리하고 모델링을 해서

잘 만들어진 모델을 멋지게 서빙까지 하는 과정에 대해서 설명을 잘 해준다.

 

 

하지만, 이 책에서는 ML Engineering에 대한 이론적인 측면에서 설명을 해주고 있지

실제 사용되는 도구들을 통해 구현적인 측면에서는 언급해주고 있지 않다.

 

서빙

 

머신러닝 파이프라인에 있어서 각 단계별로 어떤 것들을 염두에 두어야 하는지

어떤 것들을 알고 있어야 하는지에 대한 이론을 설명해주고 있다.

 

즉, 그래서 실제로 어떤 도구들을 어떻게 구축해야할지를 고민하시는 분들에게는 적합하지 않고

머신러닝을 실제 업무에 적용하기 위해 어떤 단계들로 구성이 되어있는지

각 단계별로 어떤 것들을 고민하고 조심해야하는지를 알고 싶으신 분들에게 적합할 것 같다.

 

 

※ 제이펍 서평단 활동을 위해 지급 받은 도서에 대한 리뷰입니다.

 

반응형

 

Deep Learning을 공부하다보면

제일 먼저 접하는 것은 이미지 데이터를 CNN을 통해 분석하는 방법이다.

 

그 다음에 공부하게 되는 것이

데이터들의 순서가 중요한 시계열 데이터를 위한 RNN이고

이러한 RNN이 필요한 가장 대표적인 데이터 유형이 바로 자연어 처리이다.

 

그런데, 반대로 생각해볼 필요가 있다.

자연어 처리는 반드시 RNN만 적용해야 하는 것일까?

 

이런 궁금증을 해결해줄 수 있는 책이 바로 이 책이다.

 

Natural Language Processing with PyTorch

파이토치로 배우는 자연어 처리

 

표지

 

21년 6월에 초판을 찍은 아직은 따끈따끈한 책이다.

내부에도 저 예쁜 새(노랑허리상모솔새)가 컬러로 인쇄되어 있어서 깜짝 놀랐다 ^^

 

아! 이 책은 ML/DL 관련해서 공부를 해보신 분들이라면

당연히 알고 계실 `박해선`님이 번역해주셨다!

 

초판인쇄

 

책은 정말 친절하게도 Chapter 1 하나를 소개를 위한 내용으로 채워져있다.

 

목차 1

 

또한 자연어 처리를 위한 기본적인 내용들도 친절하게 소개를 해준다.

 

심지어 Neural Network에 대한 기본적인 사항들에 대해서도 소갤를 해주고 있는데,

사실 이러한 내용들에 대해서 사전에 학습되지 않은 사람들이 과연 이 책을 구매할까?라는 의문은 있다.

 

목차2

 

Deep Learning에 대한 기본적인 공부를 이 책으로 할 수 있을지는 조금 의문스럽지만,

그럼에도 불구하고 나름 꼼꼼하고 깔끔하게 잘 설명해주고 있다.

 

이미 공부를 하신 분들도 이 책을 통해서 한 번 훑어보는 것도 괜찮을 것 같다.

 

지도학습

 

이 책의 특징 중 하나는 바로 매 챕터에 `연습문제`가 있다는 것이다.

책을 눈으로만 봤다면 쉽게 풀 수 없는 문제들이다.

 

연습문제

 

 

이 책에 대해서 총평을 해보자면,

 

Deep Learning으로 자연어 처리를 어떻게 할 수 있는지

특히 PyTorch를 이용해서 자연어 처리를 해보고 싶은 사람들에게 추천할 수 있을 것 같다.

 

하지만, 초급인 분들에게는 조금 어려움이 있을 것 같다.

최소한 Deep Learning에 대해서 기본적인 지식은 있는 분들에게 적합하다고 생각된다.

 

Deep Learning에 대한 지식이나, PyTorch에 대해서 알고싶은 사람들 보다는

자연어 처리에 대해서 공부하고 싶은 분들에게 추천한다.

 

살짝 한 번 공부해본 분들이 정리하는 차원에서 봐도 좋을 책이다.

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

반응형

개발자들에게 가장 유명한 사이트 中 하나인 GitHub.com에서는

매년 Octoverse라는 이름으로 1년간의 성과와 통계를 공개한다.

- https://octoverse.github.com/

 

Octoverse

 

그러면 Python은 2021년에 몇 번째로 사랑받았을까?!

 

Top Language

 

JavaScript에 이어 2번째로 인기있는 언어가 바로 Python이다.

 

 

그러면 Python을 공부하기에 좋은 책은 어떤 것이 있을까?!

 

혼자 공부하는 파이썬

 

책 표지에도 딱! 나와있듯이 "파이썬 분야 1위" 책이다 !!!

 

10쇄

 

그렇다! 무려 10쇄 !!!

 

많이 팔리는 책에는 분명히 이유가 있을 것이다.

 

학습가이드

 

혼공학습단

 

책 제목에 분명히 써 있듯이 "혼자 공부"하기에 정말 최적의 Python 서적인 것이다.

 

실제 해당 사이트에 가보면 정말 많은 것을 제공해주고 있다.

- https://hongong.hanbit.co.kr/%ed%8c%8c%ec%9d%b4%ec%8d%ac/

 

공식사이트

 

정말 고맙게도 동영상 강의도 무료로 제공해주고 있다.

 

동영상

 

혼자서 공부하자니 동기부여가 잘 안된다면

한빛미디어에서 정기적으로 모집하는 "혼공학습단"과 같은 이벤트에 참여하면 경품까지고 노릴 수 있다.

 

 

책 내용도 보면 정말 친절하기 그지없다.

줄 간격도 여유있게 되어 있어서 보기에 부담스럽지 않다.

 

샘플

 

얼마나 친절하냐면,

코딩 전용 폰트 설치하는 것까지 책은 물론이고 동영상으로도 설명을 해준다.

 

코딩 전용 폰트

 

조금 아쉬운 점은 예제소스를 다운로드 받아서 사용해야 한다는 점인데...

사실 github.com에서 검색하면 누군가 올려놓은 소스코드들을 쉽게 찾아볼 수는 있다.

 

예제소스

 

총평하자면,

혼자서 Python을 공부하기에는 가장 최적의 선택

무료 동영상 및 많은 커뮤니티를 통한 다양한 자료 활용 가능

다만, 정말 처음으로 Python을 공부하는 사람에게 적합

중급 이상에게는 너무 쉬운 책

반응형

 

표지

`개발자에게 바치는 머신러닝 가이드북!`

`개발자의, 개발자에 의한, 개발자를 위한 AI`

 

정말 감각적인 표지 디자인과 함께

이 책의 정체성을 그대로 보여주고 있는 부제목들이다.

 

발행일

 

정말 따끈따끈한 ... 신간 서적이다 !!

 

지은이

 

개인적으로는 첫 중국 출신 지은이들의 책이다.

텐센트와 알리바바 소속 지은이들의 서적이라니... 기대가 되기도 하고, 궁금하기도 하였다.

 

차례

 

차례를 보는 순간

`아! 정말 개발자들의 시각에서 씌여진 책이구나!`

라는 것을 느낄 수 있었다.

 

"머신러닝의 Hellow World"

 

그렇지! 개발자라면 `Hello World`로 시작해야지!!!

 

베타리더

 

베타리더들의 코멘트를 봐도 알 수 있겠지만

이 책은 이론 보다는 실습 위주의 학습을 하기 위한 독자들에게 적합하다.

 

chapter 01

 

그렇다고 해서, 이론적인 설명이 아예 없는 것도 아니다.

정말 꼭 알아야 하는 내용을 정말 깔끔하게 잘 정리해서 설명해주고 있다.

 

code

 

개인적으로 머신러닝/딥러닝을 공부하면서 이런식으로 예시를 보여주는 것은 처음 보았다.

양수/음수 분류 함수를 케라스를 이용해서 비교 구현을 해보다니 !!!

 

마무리/참고자료

 

각 챕터별로 마무리도 깔끔하게 잘 해주고 있다.

그리고 끝까지 개발자의 입장을 놓치지 않고 계속 유지하고 있다.

 

 

이 책은 정말 색깔이 확실하다.

개발자가 머신러닝을 공부할 때 좋은 책 !!!

 

 

조금 길게 설명하자면,

 

머신러닝에 대해서 책 한 권 정도는 훑어보았지만

어려운 이론들과 수학적인 설명들로 인해서 좌절을 느낀 개발자들에게

예전에 공부하던 방식으로

머신러닝과 딥러닝을 공부할 수 있도록 가이드해주는

표지가 아주 멋진 책 !!!

 

※ 제이펍 서평단 활동을 위해 지급 받은 도서에 대한 리뷰입니다.

반응형

 

`한 권으로 다지는 머신러닝&딥러닝 with 파이썬`

 

표지

 

너무나 매력적인 제목의 책이 새로 나왔다.

한 권으로 머신러닝과 딥러닝을 모두 다진다니... 그것도 파이썬을 이용해서...

 

목차를 보면 정말 알차게 채워져 있다.

 

목차

 

인공지능이 무엇인지에 대한 설명 뿐 아니라,

인공지능이 어디에 쓰이는지 사용 사례까지 소개를 해주고 있다.

딥마인드 팀에서 만든 `알파스타`로 프로게이머를 이긴 이야기도 실려있어서 재미있게 읽었다.

 

뿐만 아니라 본격적인 머신러닝 & 딥러닝 공부에 있어서도

다른 책에서는 잘 언급하지 않는 `특성 공학`부터 하나의 챕터를 할당해서 알려주고 있다.

4장

 

편집도 정말 깔끔하지 않은가!?

 

챕터에 대한 짧은 설명과 함께 학습 목표도 명시적으로 앞에서 소개를 해줘서

무엇을 알아야 하는지 한 번 생각하고 공부를 할 수 있도록 되어있다.

 

5장

 

위 사진들을 보면 알겠지만 조금 아쉽게도 이 책은 Grey Scale 이다.

하지만, 정말 친절하게도 이 책에서 사용된 이미지들을 Colored PDF 파일로 공유해주고 있다.

 

https://static.packt-cdn.com/downloads/9781839219535_ColorImages.pdf

 

color image

 

물론, 예제 코드도 제공해준다.

 

https://git.io/JahHZ

 

예제 코드에서 조금 아쉬운 점은

솔직히 공부하기에는 Jupyter Notebook 형식으로 제공해주는 것이 편한데... 대부분 Python 파일로 제공을 해주고 있다.

그리고, 별도 주석이 있다던지 하지는 않아서... 좀 아쉽다.

 

 

이 책에 대해서 전반적으로 설명을 하자면,

책 제목 그대로 머신러닝과 딥러닝에 대해서 책 한 권으로 정말 깔끔하게 잘 정리된 정성 가득한 책이다.

 

다만, 너무 넓은 범위의 내용을 책 한 권에 담아내다보니

친절한 설명까지는 기대하면 안되고

깔끔하게 요약된 내용을 보면서 다른 책이나 매체를 통해 좀 더 공부를 보충할 필요는 있어 보인다.

 

이미 머신러닝과 딥러닝을 공부하고 있는 분들이라면

이 책으로 한 번 정리한다는 느낌으로 공부하기에도 정말 훌륭한 책이 될 것 같다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

+ Recent posts