가족 여행 및 대학원 MT로 인해... 엄청난 지각 공부를 한다.

미리 하지 못했음에 대해 반성 !!!! 무릎 꿇고 반성 !!!

 

05-1 결정 트리 (Decision Tree)

- 로지스틱 회귀 (Logistic Regression)

- 결정 트리 (Decision Tree Classifier), 가지 치기(Prunning)

 

05-2 교차 검증과 그리드 서치

- 검증 세트 (validation)

- 교차 검증 (Cross Validation)

  . 분할기(Splitter)를 사용한 교차 검증 : StratifiedKFold

- 하이퍼파라미터 튜닝 (Hyperparameter Optimization)

  . 그리드 서치 (GridSearchCV)

  . 확률 분포 선택 : uniform, randint

  . 랜덤 서치 (RandomizedSearchCV)

 

05-3 트리의 앙상블 (Ensemble)

- 정형 데이터와 비정형 데이터

  . 텍스트/오디오/이미지/영상 등의 비정형 데이터는 주로 DL 에서 취급

- 랜덤 포레스트 (RandomForest)

- 엑스트라 트리 (ExtraTrees)

- 그래디언트 부스팅 (Gradient Boosting)

- 히스토그램 기반 그래디언트 부스팅 (Histogram Gradient Boosting)

- XGBoost vs LightGBM

 

 

 

 

기본 숙제 : 교차 검증을 그림으로 설명하기

 

추가 숙제 : 앙상블 모델 손 코딩

- 전체를 캡처하는 것은 무의미한 것 같아, 하단부 부분만 캡처 !!!

 

반응형

+ Recent posts