표지

`개발자에게 바치는 머신러닝 가이드북!`

`개발자의, 개발자에 의한, 개발자를 위한 AI`

 

정말 감각적인 표지 디자인과 함께

이 책의 정체성을 그대로 보여주고 있는 부제목들이다.

 

발행일

 

정말 따끈따끈한 ... 신간 서적이다 !!

 

지은이

 

개인적으로는 첫 중국 출신 지은이들의 책이다.

텐센트와 알리바바 소속 지은이들의 서적이라니... 기대가 되기도 하고, 궁금하기도 하였다.

 

차례

 

차례를 보는 순간

`아! 정말 개발자들의 시각에서 씌여진 책이구나!`

라는 것을 느낄 수 있었다.

 

"머신러닝의 Hellow World"

 

그렇지! 개발자라면 `Hello World`로 시작해야지!!!

 

베타리더

 

베타리더들의 코멘트를 봐도 알 수 있겠지만

이 책은 이론 보다는 실습 위주의 학습을 하기 위한 독자들에게 적합하다.

 

chapter 01

 

그렇다고 해서, 이론적인 설명이 아예 없는 것도 아니다.

정말 꼭 알아야 하는 내용을 정말 깔끔하게 잘 정리해서 설명해주고 있다.

 

code

 

개인적으로 머신러닝/딥러닝을 공부하면서 이런식으로 예시를 보여주는 것은 처음 보았다.

양수/음수 분류 함수를 케라스를 이용해서 비교 구현을 해보다니 !!!

 

마무리/참고자료

 

각 챕터별로 마무리도 깔끔하게 잘 해주고 있다.

그리고 끝까지 개발자의 입장을 놓치지 않고 계속 유지하고 있다.

 

 

이 책은 정말 색깔이 확실하다.

개발자가 머신러닝을 공부할 때 좋은 책 !!!

 

 

조금 길게 설명하자면,

 

머신러닝에 대해서 책 한 권 정도는 훑어보았지만

어려운 이론들과 수학적인 설명들로 인해서 좌절을 느낀 개발자들에게

예전에 공부하던 방식으로

머신러닝과 딥러닝을 공부할 수 있도록 가이드해주는

표지가 아주 멋진 책 !!!

 

※ 제이펍 서평단 활동을 위해 지급 받은 도서에 대한 리뷰입니다.

반응형

 

`한 권으로 다지는 머신러닝&딥러닝 with 파이썬`

 

표지

 

너무나 매력적인 제목의 책이 새로 나왔다.

한 권으로 머신러닝과 딥러닝을 모두 다진다니... 그것도 파이썬을 이용해서...

 

목차를 보면 정말 알차게 채워져 있다.

 

목차

 

인공지능이 무엇인지에 대한 설명 뿐 아니라,

인공지능이 어디에 쓰이는지 사용 사례까지 소개를 해주고 있다.

딥마인드 팀에서 만든 `알파스타`로 프로게이머를 이긴 이야기도 실려있어서 재미있게 읽었다.

 

뿐만 아니라 본격적인 머신러닝 & 딥러닝 공부에 있어서도

다른 책에서는 잘 언급하지 않는 `특성 공학`부터 하나의 챕터를 할당해서 알려주고 있다.

4장

 

편집도 정말 깔끔하지 않은가!?

 

챕터에 대한 짧은 설명과 함께 학습 목표도 명시적으로 앞에서 소개를 해줘서

무엇을 알아야 하는지 한 번 생각하고 공부를 할 수 있도록 되어있다.

 

5장

 

위 사진들을 보면 알겠지만 조금 아쉽게도 이 책은 Grey Scale 이다.

하지만, 정말 친절하게도 이 책에서 사용된 이미지들을 Colored PDF 파일로 공유해주고 있다.

 

https://static.packt-cdn.com/downloads/9781839219535_ColorImages.pdf

 

color image

 

물론, 예제 코드도 제공해준다.

 

https://git.io/JahHZ

 

예제 코드에서 조금 아쉬운 점은

솔직히 공부하기에는 Jupyter Notebook 형식으로 제공해주는 것이 편한데... 대부분 Python 파일로 제공을 해주고 있다.

그리고, 별도 주석이 있다던지 하지는 않아서... 좀 아쉽다.

 

 

이 책에 대해서 전반적으로 설명을 하자면,

책 제목 그대로 머신러닝과 딥러닝에 대해서 책 한 권으로 정말 깔끔하게 잘 정리된 정성 가득한 책이다.

 

다만, 너무 넓은 범위의 내용을 책 한 권에 담아내다보니

친절한 설명까지는 기대하면 안되고

깔끔하게 요약된 내용을 보면서 다른 책이나 매체를 통해 좀 더 공부를 보충할 필요는 있어 보인다.

 

이미 머신러닝과 딥러닝을 공부하고 있는 분들이라면

이 책으로 한 번 정리한다는 느낌으로 공부하기에도 정말 훌륭한 책이 될 것 같다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

 

머신러닝에 대한 이론 공부만 해서는 실무에서 적용할 때 무쓸모가 될 수도 있기에 😥

실무에 적용을 어떻게 해야하는지에 대해서 살펴보고자 찾던 중 찾게 된 도서 !! 😍

 

"Machine Learning for Business"

 

책 표지

 

왠지 멋지게 생긴 선장 같은 아저씨가 더욱 더 눈길을 잡아끌었다.

 

하지만, 보험약관 처럼 놓친 것이 있었으니...

"아마존 세이지메이커와 주피터를 활용한 빠르고 효과적인 머신러닝 활용법"

 

어쩐지 추천의 글에 있는 2분 모두 AWS코리아 소속이시더라니... 😁

 

 

뭐 하지만, 회사에서도 퍼블릭 클라우드 사용량을 보면 대부분 AWS를 쓰고 있고,

글로벌 트렌드를 봐도 뭐 AWS가 대세이기는하니 ...

이번 기회에 말로만 듣던 세이지메이커 한 번 써보지 뭐 !!! 😑

 

 

우선 AWS 가입부터 해야하는데,

친절하게도 책의 뒷 부분에 있는 '부록'에

"AWS 가입"부터 파일 저장을 위한 S3 설정 및 사용방법, 세이지메이커 설정 등에 대해서 친절히 알려준다.

 

Amazon SageMaker

 

그런데, AWS 서비스 쓰려면 돈드는 것 아닌가!?

본래 처음 가입하면 1년간 어느 정도 사용할 수 있는 무료 정책이 있다지만

나는 이미 무료 1년이 지났는데... 그래서 홈페이지 찾아가봤다.

 

SageMaker 요금제

리전을 서울로 바꾸지는 말자.

시간당 요금이 여기보다 비싸다.

 

그런데, 실제 사용하면 얼마쯤 나온다는 것일까?

 

SageMaker 요금 예제

 

2시간 정도 쓰면 500원쯤 지불한다는거네... 음... 나의 똑똑해짐을 위해 이 정도는 투자해줘도 될 것 같다. 😎

 

뭐, 기본 환경 구축은 이 정도로 하고...

 

 

 

책의 내용을 살펴보자.

 

도서 구성

 

일반적인 회사의 운영 영역을 시나리오로 해서 구성이 되어있다.

 

각 시나리오에 따라 데이터가 제공되고

그 데이터를 모델에 적합한 형태로 가공도 하고

학습/검증/테스트 용도에 맞게 데이터셋 분리도 해보고

시나리오와 데이터에 맞는 머신러닝 알고리즘을 선택해서 학습도 한다.

심지어 AWS 비용 절감을 위한 관리 방법까지도 알려준다.

 

 

다만, 이렇게 실제 머신러닝을 비즈니스에 적용하기 위한 과정을

AWS SageMaker를 이용해서 적용하는 과정에 대해서 설명을 하다보니

머신러닝에 대해서는 많은 분량으로 설명해주지는 않는다.

 

하지만 이 부분은 절대 이 책의 단점이 아니다!!!

 

이 책은 분명히 타이틀에 적어놓은 것 처럼

"비즈니스 머신러닝"에 대한 책이다!!!

 

또한,

"아마존 세이지메이커와 주피터를 활용한 빠르고 효과적인 머신러닝 활용법"에 대해서 알려주는 책이다.

 

 

그리고, 이 책의 경우 원서에는 없는 설명도 포함되어 있다.

 

한국어판 부록

 

IT 서적의 안타까운 부분인데... 대상 시스템이 업그레이드가 되어버려 버전이 맞지 않게 되는 것이다.

하지만, 친절하게도 버전을 맞출 수 있는 방법을 가이드해주고 있다.

 

 

머신러닝에 대해서 기본적인 사항들을 공부하신 분들에게 추천하고픈 책이다.

전체적으로 어떤 흐름으로 비즈니스에 적용하는지 살펴보기에 충분히 괜찮은 책이다.

 

 

※ 이 책은 한빛출판네트워크의 '나는 리뷰어다' 이벤트를 통해 제공 받은 도서입니다.

반응형

 

이번 달에 보게된 책은 다음과 같다.

 

[한빛미디어] Machine Learning with Python Cookbook - 파이썬을 활용한 머신러닝 쿡북

 

 

 

주의할 점은

이 책은 입문자를 위한 책이 아니라

머신러닝에 대해 익숙한 개발자를 위한 책이라는 사실이다.

 

 

 

하지만, 그렇다고 해서 너무 겁먹을 필요는 없다.

 

친절하게도 numpy 기본에 대해서도

한 번 집어주는 등 나름 친절한 부분도 있으니

너무 무서워 할 필요는 없다.

 

 

 

 

 

 

Chapter 1 에서는 numpy에 대해서 알려주고 있고

 

 

 

Chapter 2 에서는 sklearn(사이킷런)을 이용한 샘플데이터 생성하기와

pandas(판다스)를 이용한 외부데이터 불러오기 등을 알려준다.

 

사실 이 정도면 거의 입문서라고 봐도 무방할 것 같다.

 

 

 

그리고, 더욱 더 친절하게도 옮긴이(박해선님)가

"덧붙임"이라고 추가적인 설명까지도 제공해주고 있다.

 

 

 

물론 그렇다고 해서 머신러닝에 대해서

한 번도 공부해보지 않은

말 그대로의 입문자에게

추천할 수는 없을 것 같다.

 

 

머신러닝에 대해서

한 번쯤 간략하게 살펴본

입문자는 아니고

초보자라고 불리울 정도의

수준에 있는 분에게 필요한 책으로 보인다.

 

 

 

그리고 개인적으로 마음에 드는 것은

흑백이 아니라 살짝 컬러가 들어가 있다 !!!

 

 

 

 

이 책은 표지에 써 있는 것처럼

사이킷런 중심으로 작성되어 있다.

 

뒷 부분에는 케라스로 작성된 내용도 있긴하다.

 

참고하면 될 것 같다.

 

 

 

 

이 책에 대한 정오표는 아래에서 확인할 수 있다.

 

https://tensorflow.blog/ml-cookbook/

 

 

 

그리고, 원서에서는 제공하지 않는 코드를 옮긴이가 별도로 제공해준다!!!

 

https://github.com/rickiepark/machine-learning-with-python-cookbook

 

 

* 이 책은 한빛출판네트워크의 '나는 리뷰어다' 이벤트를 통해 제공 받은 도서입니다.

반응형


머신러닝에 대해서 공부를 한다고 하면,

예전에는 (아직도) R 등과 같은 수학에 맞춰진 언어를 소개하기도 하지만 대부분은 Python을 추천한다.


사실은 Python이라는 언어 자체가 중요한 것이 아니라

머신러닝을 할 때 필요한 많은 기능(?)들을 제공해주는 라이브러리들이 중요한데

Pandas, Numpy 라이브러리가 워낙에 잘 되어 있어서 Python을 사용하라고 하는 것이다.

물론 Python이라는 언어 자체도 매력적이긴 하지만...



이에 대해서 공부를 하고자 하는 분들에게 드리는 좋은 정보~


Google에서 무려 한국어로 제공해주는 "머신러닝 단기집중과정" 온라인 강좌

https://developers.google.com/machine-learning/crash-course


그 중에서도 Pandas에 대해서 직접 실습해가며 배울 수 있는 정말 멋진 과정

- https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=pandas-colab&hl=ko



그런데, 위의 내용 말고도 좋은 강좌가 하나 더 있다.

머신러닝에 대해서 공부하다보면 누구나 알게 되는 Kaggle !!


 Kaggle에서도 Pandas에 대해서 친절한 강좌를 제공해준다.

https://www.kaggle.com/learn/pandas


4시간이면 끝낼 수 있단다~!! ^^ (필자는 멍청해서 4일은 걸릴듯... ㅠㅜ)




모두들 즐거운 머신러닝 공부시간 되세요~


반응형

+ Recent posts