Chapter 03

 

어느덧 3주차 스터디까지 왔다! 와아 ~~~~ !!!

2주차 우수혼공족에 선정되어 간식 선물까지 받았다 ~~~ !!! 꺄아 ~~~~ !!!

 

우수혼공족

 

▶ 요약

3-1. 불필요한 데이터 삭제하기
- *.loc[]
  . slicing(슬라이싱)
    ( *.loc[:, '번호':'등록일자'] )
  . boolean array(불리언 배열)
    ( df.loc[:, df.column != 'map'] )
- *.drop()
  . 지칭하는 column을 삭제
    ( *.drop(column_name, axis=1) )
  . 지칭하는 row를 삭제
    ( *.drop([0,1]) # 0행, 1행을 삭제 )
- *.dropna()
  . NaN 값을 1개라도 갖고 있으면 column 삭제
    ( *.dropna(axis=1) )
  . NaN 값을 모두 갖고 있으면 column 삭제
    ( *.dropna(axis=1, how='all') )
- *.duplicated()
  . 지정한 columns의 값이 동일하면 중복된 행의 값을 리턴
    ( *.duplicated(subset=['도서명','저자','ISBN'], keep=False) )
- *.groupby()
  . 지정한 columns의 값이 동일한 것들을 묶어줌
    ( *.groupby(by=['도서명', '저자', 'ISBN', '권'], dropna=False).sum() )

3-2. 잘못된 데이터 수정하기
- *.info()
  . DataFrame의 다양한 통계를 보여주는 유용한 method
- *.isna()
  . NaN 값을 갖고 있는 column을 보여줌
    ( *.isna().sum() )
- Nan
  . None
  . np.nan
- *.fillna()
  . NaN 값을 갖고 있는 columns에 지정한 값을 채움
    ( *.fillna('없음') )
    ( *['부가기호'].fillna('없음') )
    ( *.fillna( {'부가기호':'없음'} ) )
- *.replace()
  . 값 exchange
    ( *.replace(np.nan, '없음') )
    ( *.replace( [np.nan, '2021'], ['없음', '21']) )
    ( *.replace( {np.nan: '없음', '2021' : '21']) )
    ( *.replace( {'부가기호': np.nan}, '없음') )
    ( *.replace( {'부가기호': {np.nan : '없음'}, '발행년도': {'2021' : '21'}} ) )
  . 정규표현식
    ( *.replace( {'발행년도': {r'\d{2}(\d{2})' : r'\1'}}, regex=True) )

 

 

▶ 기본 미션

p. 182의 확인 문제 2번 풀고 인증하기

 

[문제]

1번 문제의 df1 데이터프레임에서 'col1' 열의 합을 계산하는 명령으로 올바르지 않은 것은 무엇인가요?

 

 

df1['col1'].sum()

df1[['col1']].sum()

df1.loc[:, df1.columns == 'col1'].sum()

df1.loc[:, [False,False,True]].sum()

 

 

※ 위 문제에서 bold 표기한 부분은 책에서 잘못된 부분을 수정한 내용입니다.

    - 문제에서 "것은" 부분이 빠져있었습니다.

    - 보기에서 "df"가 아니라 "df1"이라고 해야합니다.

 

[풀이]

④ 에서 boolean으로 표기된 내역을 보면 [False,False,True]로 되어있기에 'col1'이 아니라 'col3'의 합계가 출력된다.

 

그러면, 이것을 검증해보자.

 

일단, 데이터를 준비해봤다.

NaN 값을 처리하기 위해 Numpy의 np.nan을 사용했다.

 

 

각 보기의 값을 확인해보자.

 

 

확인 끝~

 

 

▶ 선택 미션

p. 219의 확인 문제 5번 풀고 인증하기

 

[문제]

다음과 같은 df 데이터프레임에서 df.replace(r'ba.*', 'new', regex=True)의 결과는 무엇인가요?

 

보기는 생략.

 

※ 위 문제에서 bold 표기한 부분은 책에서 잘못된 부분을 수정한 내용입니다.

    - 문제에서 "같은" 부분이 빠져있었습니다.

 

[풀이]

정규식을 이용한 replace() 문제이다.

정규식을 보면 r'ba.*' 부분을 살펴보면 'ba'로 시작하는 문자열을 지칭하고 있다.

그래서 'ba'로 시작하는 문자열을 'new'로 바꿔치기하면 된다.

 

교재(책) 보기로 보면 ③ 번에 해당하는 결과가 정답이 된다.

 

이것을 검증해보자.

 

 

 

이번 Chapter는 비교적 수월했다.

남은 기간 스스로에게 파이팅 !!!

 

반응형

 

최근 특히 AI 관련한 개발 업무를 하게 되면서 Anaconda를 필요로 하는 경우가 많다.

 

https://www.anaconda.com/

 

그런데, 문제는 ... 라이선스 이슈가 있기에 회사에서 사용하려면 주의를 해야 한다.

 

"어?! 오픈소스 아니야?"

 

라고 생각하는 분들이 많을 것 같은데,

홈페이지 주소를 보면 알겠지만 Anaconda는 300명 이상의 임직원을 보유하고 있는 회사다.

 

하지만, 아주 선량하게도 오픈소스 커뮤니티도 유지하면서

오픈소스 프로젝트나 교육 기관 등에서 무료로 사용할 수 있도록 해주고 있다.

 

Pricing

 

그런데, 문제는 저기 보이는 "Free" 요금제의 조건이다.

 

Free Plans

 

200명 이상의 임직원이 있는 곳이라면 .... 무료로 사용하면 안된다.

조금 더 자세히 살펴보자.

 

https://www.anaconda.com/blog/anaconda-commercial-edition-faq

 

2020년도에 (아마도 먹고 살기 위해) 서비스 약관을 변경했다.

200명 이상 규모의 회사에서 사용하기 위해서는 Enterprise Edition을 사용해야 한다.

 

그런데, 더 자세히 살펴보기 바란다.

 

"Anaconda vs. Anaconda's repositories"

 

Anaconda를 사용하는 것이 문제가 아니라

Anaconda의 저장소를 사용하는 것이 문제란다.

 

어!? 그러면 Anaconda' s repositories를 사용하지 않으면 되는 것 아닌가?!

 

https://www.anaconda.com/about-us

 

CEO이자 창립자인 피터 왕 형님(?)이 reddit에서 직접 그냥 대놓고 방법을 알려주셨다.

 

https://www.reddit.com/r/Python/comments/iqsk3y/comment/g4xuabr/

 

Miniconda + conda-forge 조합으로 사용하면

Anaconda의 commercial 약관에 영향을 받지 않는다.

 

결론 !!!

200명 이상 임직원을 보유하고 있는 회사에서는 Miniconda + conda-forge 조합으로 설치해서 사용하면 된다.

 

▶ Miniconda

쓸데 없는 패키지 설치 없이 깔끔하게 설치되는 가벼운 conda 이다.

 

https://docs.conda.io/projects/miniconda/en/latest/

 

Ubuntu 환경에서 설치하는 과정을 살펴보겠다.

❯ mkdir -p ~/miniconda3

❯ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
--2024-01-10 23:13:40--  https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
repo.anaconda.com (repo.anaconda.com) 해석 중... 104.16.130.3, 104.16.131.3, 2606:4700::6810:8203, ...
다음으로 연결 중: repo.anaconda.com (repo.anaconda.com)|104.16.130.3|:443... 연결했습니다.
HTTP 요청을 보냈습니다. 응답 기다리는 중... 200 OK
길이: 141613749 (135M) [text/x-sh]
저장 위치: `/home/chani22/miniconda3/miniconda.sh'

/home/chani22/miniconda3/miniconda.sh        100%[==============================>] 135.05M  57.3MB/s    / 2.4s     

2024-01-10 23:13:43 (57.3 MB/s) - `/home/chani22/miniconda3/miniconda.sh' 저장함 [141613749/141613749]


❯ bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
PREFIX=/home/chani22/miniconda3
Unpacking payload ...
                                                                                                               
Installing base environment...


Downloading and Extracting Packages:


Downloading and Extracting Packages:

Preparing transaction: done
Executing transaction: done
installation finished.

❯ rm -rf ~/miniconda3/miniconda.sh

❯ ~/miniconda3/bin/conda init zsh
no change     /home/chani22/miniconda3/condabin/conda
no change     /home/chani22/miniconda3/bin/conda
no change     /home/chani22/miniconda3/bin/conda-env
no change     /home/chani22/miniconda3/bin/activate
no change     /home/chani22/miniconda3/bin/deactivate
no change     /home/chani22/miniconda3/etc/profile.d/conda.sh
no change     /home/chani22/miniconda3/etc/fish/conf.d/conda.fish
no change     /home/chani22/miniconda3/shell/condabin/Conda.psm1
no change     /home/chani22/miniconda3/shell/condabin/conda-hook.ps1
no change     /home/chani22/miniconda3/lib/python3.11/site-packages/xontrib/conda.xsh
no change     /home/chani22/miniconda3/etc/profile.d/conda.csh
modified      /home/chani22/.zshrc

==> For changes to take effect, close and re-open your current shell. <==  

 

마지막의 init은 새로운 버전으로 업데이트하거나 했을 때 초기화 하는 것인데 그냥 첫 설치 때도 해봤다.

bash 쓰시는 분들은 뒤의 zsh 부분을 바꿔치기하면 된다.

 

 

▶ conda-forge

conda가 설치되면 기본적으로 등록되어 있는 channel은 "https://repo.anaconda.com/pkgs/" 이다.

저 저장소가 바로 문제가 되는 최종 사용자 라이선스 계약(EULA) 항목이 존재하는 곳이다.

- https://legal.anaconda.com/policies/en/?name=end-user-license-agreement#end-user-license-agreement

 

그러면 conda-forge는 무엇일까?

 

https://conda-forge.org/

 

community 리딩의 많은 기여자들의 활발한 참여로 운영되는 저장소이다.

 

정말 많은 패키지들이 등록되고 있고 그렇다보니

Anaconda의 공식 저장소보다 더 많은 패키지들이 존재하기에 commercial 이슈가 아니더라도

일부러 conda-forge를 저장소로 등록해서 사용자들도 많다고 한다.

 

conda에서는 이러한 저장소를 channel이라는 용어를 사용하고 있다.

❯ conda config --add channels conda-forge

❯ conda config --set channel_priority strict

❯ conda config --show channels
channels:
  - conda-forge
  - defaults

 

끝이다.

 

말이 좀 많았는데 실제로 손으로 직접 해야하는 것은 별 것 없다.

이걸로 compliance 이슈를 하나 해결할 수 있다 ^^

 

 

그러면, 실습을 하나 해보자 !!!

 

▶ Jupyter Notebook 실행하기

 

① 가상환경 생성하기

명령어 실행하는 위치는 어디든 무관하다.

❯ conda create -n python_39 python=3.9.15
Channels:
 - conda-forge
 - defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /home/chani22/miniconda3/envs/python_39

  added / updated specs:
    - python=3.9.15


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    _libgcc_mutex-0.1          |      conda_forge           3 KB  conda-forge
    _openmp_mutex-4.5          |            2_gnu          23 KB  conda-forge
    bzip2-1.0.8                |       hd590300_5         248 KB  conda-forge
    ca-certificates-2023.11.17 |       hbcca054_0         151 KB  conda-forge
    ld_impl_linux-64-2.40      |       h41732ed_0         688 KB  conda-forge
    libffi-3.4.2               |       h7f98852_5          57 KB  conda-forge
    libgcc-ng-13.2.0           |       h807b86a_3         755 KB  conda-forge
    libgomp-13.2.0             |       h807b86a_3         412 KB  conda-forge
    libnsl-2.0.1               |       hd590300_0          33 KB  conda-forge
    libsqlite-3.44.2           |       h2797004_0         826 KB  conda-forge
    libuuid-2.38.1             |       h0b41bf4_0          33 KB  conda-forge
    libzlib-1.2.13             |       hd590300_5          60 KB  conda-forge
    ncurses-6.4                |       h59595ed_2         864 KB  conda-forge
    openssl-3.2.0              |       hd590300_1         2.7 MB  conda-forge
    pip-23.3.2                 |     pyhd8ed1ab_0         1.3 MB  conda-forge
    python-3.9.15              |hba424b6_0_cpython        21.0 MB  conda-forge
    readline-8.2               |       h8228510_1         275 KB  conda-forge
    setuptools-69.0.3          |     pyhd8ed1ab_0         460 KB  conda-forge
    tk-8.6.13                  |noxft_h4845f30_101         3.2 MB  conda-forge
    tzdata-2023d               |       h0c530f3_0         117 KB  conda-forge
    wheel-0.42.0               |     pyhd8ed1ab_0          56 KB  conda-forge
    xz-5.2.6                   |       h166bdaf_0         409 KB  conda-forge
    ------------------------------------------------------------
                                           Total:        33.5 MB

The following NEW packages will be INSTALLED:

  _libgcc_mutex      conda-forge/linux-64::_libgcc_mutex-0.1-conda_forge 
  _openmp_mutex      conda-forge/linux-64::_openmp_mutex-4.5-2_gnu 
  bzip2              conda-forge/linux-64::bzip2-1.0.8-hd590300_5 
  ca-certificates    conda-forge/linux-64::ca-certificates-2023.11.17-hbcca054_0 
  ld_impl_linux-64   conda-forge/linux-64::ld_impl_linux-64-2.40-h41732ed_0 
  libffi             conda-forge/linux-64::libffi-3.4.2-h7f98852_5 
  libgcc-ng          conda-forge/linux-64::libgcc-ng-13.2.0-h807b86a_3 
  libgomp            conda-forge/linux-64::libgomp-13.2.0-h807b86a_3 
  libnsl             conda-forge/linux-64::libnsl-2.0.1-hd590300_0 
  libsqlite          conda-forge/linux-64::libsqlite-3.44.2-h2797004_0 
  libuuid            conda-forge/linux-64::libuuid-2.38.1-h0b41bf4_0 
  libzlib            conda-forge/linux-64::libzlib-1.2.13-hd590300_5 
  ncurses            conda-forge/linux-64::ncurses-6.4-h59595ed_2 
  openssl            conda-forge/linux-64::openssl-3.2.0-hd590300_1 
  pip                conda-forge/noarch::pip-23.3.2-pyhd8ed1ab_0 
  python             conda-forge/linux-64::python-3.9.15-hba424b6_0_cpython 
  readline           conda-forge/linux-64::readline-8.2-h8228510_1 
  setuptools         conda-forge/noarch::setuptools-69.0.3-pyhd8ed1ab_0 
  tk                 conda-forge/linux-64::tk-8.6.13-noxft_h4845f30_101 
  tzdata             conda-forge/noarch::tzdata-2023d-h0c530f3_0 
  wheel              conda-forge/noarch::wheel-0.42.0-pyhd8ed1ab_0 
  xz                 conda-forge/linux-64::xz-5.2.6-h166bdaf_0 


Proceed ([y]/n)? 


Downloading and Extracting Packages:
                                                                                                                                                                                   
Preparing transaction: done                                                                                                                                                        
Verifying transaction: done                                                                                                                                                        
Executing transaction: done                                                                                                                                                        
#                                                                                                                                                                                  
# To activate this environment, use                                                                                                                                                
#                                                                                                                                                                                  
#     $ conda activate python_39                                                                                                                                                   
#                                                                                                                                                                                  
# To deactivate an active environment, use                                                                                                                                         
#                                                                                                                                                                                  
#     $ conda deactivate                                                                                                                                                           
  

 

② 가상환경 활성화 하기

친절하게 앞에서 알려준대로 실행하면 된다.

❯ conda activate python_39

 

③ 패키지 설치

❯ pip install jupyter notebook ipykernel
Collecting jupyter
  Downloading jupyter-1.0.0-py2.py3-none-any.whl (2.7 kB)
Collecting notebook
  Downloading notebook-7.0.6-py3-none-any.whl.metadata (10 kB)
Collecting ipykernel
  Downloading ipykernel-6.28.0-py3-none-any.whl.metadata (6.0 kB)
Collecting qtconsole (from jupyter)
  Downloading qtconsole-5.5.1-py3-none-any.whl.metadata (5.1 kB)

...  

 

④ 가상환경과 Jupyter Notebook 연결

❯ python -m ipykernel install --user --name python_39 --display-name python_39
Installed kernelspec python_39 in /home/chani22/.local/share/jupyter/kernels/python_39

 

⑤ Jupyter Notebook 실행

❯ jupyter notebook
[W 2024-01-11 00:29:46.408 ServerApp] A `_jupyter_server_extension_points` function was not found in jupyter_lsp. Instead, a `_jupyter_server_extension_paths` function was found and will be used for now. This function name will be deprecated in future releases of Jupyter Server.
[W 2024-01-11 00:29:46.429 ServerApp] A `_jupyter_server_extension_points` function was not found in notebook_shim. Instead, a `_jupyter_server_extension_paths` function was found and will be used for now. This function name will be deprecated in future releases of Jupyter Server.
[I 2024-01-11 00:29:46.429 ServerApp] jupyter_lsp | extension was successfully linked.
[I 2024-01-11 00:29:46.432 ServerApp] jupyter_server_terminals | extension was successfully linked.
[I 2024-01-11 00:29:46.435 ServerApp] jupyterlab | extension was successfully linked.
[I 2024-01-11 00:29:46.439 ServerApp] notebook | extension was successfully linked.
[I 2024-01-11 00:29:46.440 ServerApp] Writing Jupyter server cookie secret to /home/chani22/.local/share/jupyter/runtime/jupyter_cookie_secret
[I 2024-01-11 00:29:46.604 ServerApp] notebook_shim | extension was successfully linked.
[I 2024-01-11 00:29:46.618 ServerApp] notebook_shim | extension was successfully loaded.
[I 2024-01-11 00:29:46.619 ServerApp] jupyter_lsp | extension was successfully loaded.
[I 2024-01-11 00:29:46.620 ServerApp] jupyter_server_terminals | extension was successfully loaded.
[I 2024-01-11 00:29:46.621 LabApp] JupyterLab extension loaded from /home/chani22/miniconda3/envs/python_39/lib/python3.9/site-packages/jupyterlab
[I 2024-01-11 00:29:46.621 LabApp] JupyterLab application directory is /home/chani22/miniconda3/envs/python_39/share/jupyter/lab
[I 2024-01-11 00:29:46.622 LabApp] Extension Manager is 'pypi'.
[I 2024-01-11 00:29:46.624 ServerApp] jupyterlab | extension was successfully loaded.
[I 2024-01-11 00:29:46.625 ServerApp] notebook | extension was successfully loaded.
[I 2024-01-11 00:29:46.626 ServerApp] Serving notebooks from local directory: /srv/workspace/python_39
[I 2024-01-11 00:29:46.626 ServerApp] Jupyter Server 2.12.3 is running at:
[I 2024-01-11 00:29:46.626 ServerApp] http://localhost:8888/tree?token=5ed486a3d676270879b3684991a11b4932c981c265dddef4
[I 2024-01-11 00:29:46.626 ServerApp]     http://127.0.0.1:8888/tree?token=5ed486a3d676270879b3684991a11b4932c981c265dddef4
[I 2024-01-11 00:29:46.626 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 2024-01-11 00:29:47.025 ServerApp] 
    
    To access the server, open this file in a browser:
        file:///home/chani22/.local/share/jupyter/runtime/jpserver-4428-open.html
    Or copy and paste one of these URLs:
        http://localhost:8888/tree?token=5ed486a3d676270879b3684991a11b4932c981c265dddef4
        http://127.0.0.1:8888/tree?token=5ed486a3d676270879b3684991a11b4932c981c265dddef4
[I 2024-01-11 00:29:47.041 ServerApp] Skipped non-installed server(s): bash-language-server, dockerfile-language-server-nodejs, javascript-typescript-langserver, jedi-language-server, julia-language-server, pyright, python-language-server, python-lsp-server, r-languageserver, sql-language-server, texlab, typescript-language-server, unified-language-server, vscode-css-languageserver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, yaml-language-server

 

웹브라우저가 실행되면서 Jupyrt Notebook이 등장한다!!!

Jupyter Notebook

 

새로운 파일을 하나 생성해보자.

New - Notebook

 

기본 kernel도 보이지만,

우리가 만들어낸 python_39 도 보인다.

Select Kernel

 

개발자라면 외쳐요. Hello ~ !!!

Hello

 

오른쪽 상단 즈음에 보이는 JupyterLab 버튼은 뭐지?

JupyrtLab

 

응?! 이건 Colab ???? ^^

 

 

즐거운 회사 생활 !!!

반응형

나름의 이유로 시스템에서 메일을 보내야할 일이 있는데,

이왕이면 Gmail을 이용해보고 싶어서 살펴보기로 했다.

 

일단 Gmail을 통해 이메일을 보내기 위해서

미리 셋팅을 해줘야 할 것이 있다.

 

 

Gmail의 설정 화면으로 이동한 뒤에

 

 

IMAP 사용 설정을 해주면 된다.

 

 

그런데, Python 코드에서 Gmail 인증 부분을 구현해야 이메일 발송을 할 수 있을텐데,

2가지 방법 중 하나를 선택해야 한다.

 

1. 로그인 PASSWORD
2. 앱 PASSWORD

 

로그인 PASSWORD를 사용하기에는 왠지 찝찝한 느낌이 들기에

앱 PASSWORD를 사용하도록 해보겠다. (보안은 중요하다!!! ^^)

 

 

Google 계정 관리 화면에 일단 들어가보자.

 

 

어?! 그런데, 찾고자 하는 "앱 비밀번호" 부분이 안보인다.

 

 

2단계 인증을 사용한다고 해야 원하는 항목이 등장한다.

2단계 인증을 사용하게 되면 조금 불편할 수도 있지만, 보안을 위한 일이니 감수하자!!! ^____^

 

 

전화 및 인증 기기 등을 잘 확인하면서 진행하면 되는데,

 

 

개인적으로 OTP 앱까지 추가해주는 것을 추천한다.

 

자~ 이제, "앱 비밀번호" 항목을 볼 수 있다.

 

 

우리 입맛에 맞게 생성 진행하면 된다.

 

 

그러면 16 digit을 만들어 준다.

 

 

저 비밀번호는 다시 안알려준다. 미리 잘 기억/기록 해야 한다.

 

 

자~ 이제 Gmail에서 준비할 것은 모두 끝났다.

이제 Python 코딩을 시작해보자.

 

 
  #!/usr/bin/env python3
  """
  Send email via Gmail SMTP
  """

  __author__ = "whatwant"
  __version__ = "0.1.0"
  __license__ = "BEER-WARE"

  import smtplib
  from email.mime.text import MIMEText
  from email.mime.multipart import MIMEMultipart

  def send_email(sender_email, receiver_email, app_password, subject, text, html):
      message = MIMEMultipart("alternative")
      message["Subject"] = subject
      message["From"] = sender_email
      message["To"] = receiver_email

      part1 = MIMEText(text, "plain")
      part2 = MIMEText(html, "html")

      message.attach(part1)
      message.attach(part2)

      with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server:
          server.login(sender_email, app_password)
          server.sendmail(sender_email, receiver_email, message.as_string())

  if __name__ == "__main__":
      sender_email = "whatwant@whatwant.com"
      receiver_email = "whatwant@gmail.com"
      app_password = "xxx"
 
      subject = "This is a lucky email from Python"
      text = "whatwant is a good man."
      html = f"<html><body><p>{text}</p></body></html>"
 
      send_email(sender_email, receiver_email, app_password, subject, text, html)

 

여전히 예쁘지 않은 코드이지만, 그래도 동작한다!

실행하면 된다.

 

 

메일이 잘 도착했다!!!

 

첨부파일까지 보내는 것까지 하려고 했는데, 지금 당장은 필요하지 않기에...^^

나중에 필요로 할 때 해보겠다! ^^

 

반응형

업무를 하면서 간단한 Python 코드를 작성하고

코드 리뷰를 받을 때면 종종 왠지 모르게 부끄러움을 느낄 때가 있다.

 

남들이 작성한 코드를 보면 왠지 멋져보이는데

내 코드는 왠지 모르게 초라해보이는 자격지심이..... ^^

 

예를 들어서 "현재 디렉토리의 파일 이름과 사이즈를 출력"해주는 프로그램을 작성해보자.

 

 

실행 결과도 잘 나온다.

 

 

원하는 결과를 잘 뽑아내고,

나름 함수로 잘 구분해서 잘 작성한 것 같은데..... 왠지 뭔가 부족한 듯 한 느낌이...

 

속된 말로 뭔가 "와꾸"가 있었으면 좋겠는데...

 

 

https://www.python-boilerplate.com/

 

이런 고마운 사이트가 있다니!!!

 

Parameter들을 사용하고 싶거나, Logging을 하고 싶거나 하면 "Options"에서 고르면 된다.

Unit-Test를 하고 싶은 경우에 입맛에 맞는 프레임워크를 고를 수도 있다.

 

이걸 이용해서 코드를 다시 작성해보면 다음과 같다.

 

 

뭔가 조금 더 있어보이게 된 것 같은 느낌적인 느낌이다.

 

 

별 것 아니게 느낄 수도 있겠지만,

Python과 같은 자유도가 과도하게 높은 언어로 개발을 할 때에는

이런 boilerplate 코드를 이용하는 것이 많은 도움이 된다고 생각한다!

여러분은?

 

반응형

우연히 보게된 노마드 코더(Nomad Coders)의 유튜브.

파이썬 코드만가지고 JS, React, NextJS 인터랙티브 웹앱을 만들어주는 프레임워크가 나타났단다.

 

 

최근 정말 많은 주목을 받고 있는 오픈소스 프로젝트인 것은 분명한 것 같다.

 

https://pynecone.io/

 

Pynecone: The easiest way to build web apps.

Completely customizable. All Pynecone components are fully customizable. Change the colors, fonts, and styles to match your project. Styling guide ->

pynecone.io

 

발음이 같은 'pinecone'을 상징하는 솔방울을 로고로 사용하고 있다 ^^

 

공식 웹사이트도 Pynecone을 사용해서 만들었다고 한다.

왠지 Unix is Not Unix 같은 느낌인데!? 아닌가?! ^^

 

 

Pynecone은 파이썬으로 작성한 코드를

React/NextJS로 컴파일을 하는 방식이기에 성능이 뛰어나며 그래서 node를 필요로 하고 있다.

 

보다 더 나은 성능을 위해 node를 bun으로 교체하는 작업을 하고 있지만

아직 100% 호환성을 보장하지 못하기에 당분간은 node를 계속 필요로 할 것이라고 한다.

 

 

서두가 길었다.

이제 직접 한 번 사용해보자.

 

 

이하 과정은 다음 링크의 내용을 따라갔다.

- https://pynecone.io/docs/getting-started/installation

 

 

0. PoC Environment

  - 이하 과정을 진행한 환경은 Ubuntu 20.04 64bit Desktop 이다.

 

 

2. Prerequisites

  - Python 3.7+

  - NodeJS 12.22.0+

 

  ① Python 여러 버전을 관리할 수 있는 pyenv 기반으로 설치해보자.

    . https://www.whatwant.com/entry/pyenv

    . 설치한 버전은 다음과 같이 했다.

      - v3.8.16

 

  ② node 설치도 여러 버전을 관리할 수 있는 nvm 기반으로 설치를 진행해보자.

    . https://www.whatwant.com/entry/npm

    . 설치한 버전은 다음과 같이 했다.

      - v18.15.0   (Latest LTS: Hydrogen)

 

 

3. Virtual Environment

  - Optional 이라지만, 사실 필수이지 않을까 싶다.

❯ cd ./workdir

❯ python -m venv .venv

source .venv/bin/activate

 

 

4. Installing

  - 이제 pynecone 설치하면 된다!

 pip install pynecone

 

 

5. Create a Project

  - 일단 프로젝트 생성하는 방법부터 알아보자.

 mkdir my_app_name

 cd my_app_name

 pc init

 

 

6. Run the App

  - 일단 한 번 띄워보자.

 pc run

 

  - 브라우저로 확인해보자.

 

 

 

7. Edit

  - 본문을 살짝 살펴보자.

❯ nano my_app_name/my_app_name.py

  - 눈꼽만큼 변경해보자.

"""Welcome to Pynecone! This file outlines the steps to create a basic app."""
from pcconfig import config

import pynecone as pc

docs_url = "https://pynecone.io/docs/getting-started/introduction"
filename = f"{config.app_name}/{config.app_name}.py"


class State(pc.State):
    """The app state."""

    pass


def index() -> pc.Component:
    return pc.center(
        pc.vstack(
            pc.heading("Welcome to WHATWANT!", font_size="2em"),
            pc.box("Get started by editing ", pc.code(filename, font_size="1em")),
            pc.link(
                "Check out our docs!",
                href=docs_url,
                border="0.1em solid",
                padding="0.5em",
                border_radius="0.5em",
                _hover={
                    "color": "rgb(107,99,246)",
                },
            ),
            spacing="1.5em",
            font_size="2em",
        ),
        padding_top="10%",
    )


# Add state and page to the app.
app = pc.App(state=State)
app.add_page(index)
app.compile()

 

  - 포트도 변경하고, debug log도 찍어보자.

❯ pc run --port 8282 --loglevel debug

 

  - http://localhost:8282/

 

 

8. Fast Refresh

  - Pynecone은 실시간으로 변경 사항이 반영된다.

  - 웹브라우저가 띄워져 있는 상황에서, 다른 터미널로 파일을 수정해보자.

❯ nano my_app_name/my_app_name.py

 

  - 파일을 수정한 뒤, 저장을 하면 조금 있다가 브라우저에 자동으로 페이지 내용이 변경된다.

 

 

 

일단 여기까지 살짝 맛만 봤고

시간이 나면 다음 단계로 넘어가보겠다. (시간이 날까?! ^^)

 

반응형

제가 정말 정말 좋아하는 번역자이자 작가이신 박해선님이 내놓은 또 하나의 역작이 나왔다.

 

"혼자 공부하는 데이터 분석 with 파이썬"

 

 

요즘은 딥러닝 모델에 대해서 공부하는 것 보다

데이터 분석하는 것이 더 많이 유행하고 있는 듯 하다.

 

이런 분위기에 정말 딱 맞게 나온 책이 아닌가 싶다.

 

우리 회사에서도 DS 인증 프로그램을... @.@

 

 

박해선님은 번역하신 책이든, 직접 작성하신 책이든 항상 정성이 가득하다.

 

실습 내용도 하나 하나 모두 직접 업데이트 해주시고

Youtube로 강의도 제공하여 주시고, 심지어 오픈채팅까지도 운영해주신다니...

 

 

무려 13개의 강의 동영상을 제공해주신다!

- https://www.youtube.com/playlist?list=PLVsNizTWUw7FGzSRCkQrPEEe-ljVXgS7k 

 

 

직접 물어보고 대답을 들을 수 있는 카카오 오픈채팅 !!!

- https://open.kakao.com/o/gBF5aQ1c

 

 

1월 2일, 새해가 시작하자마자 1쇄 발행을 하다니... 너무 한 것 아닌가?! ㅋㅋㅋ

 

 

박해선님은 항상 도식화를 좋아하시는 것 같다 ^^

 

 

딥러닝 모델링에 대해서 공부하려면 수학이 발목을 잡는 것 처럼

데이터 분석에 대해서 공부하려면 파이썬이 발목을 잡는다.

 

발목 잡히지 않으려면 시간을 들여서 제대로 파이썬을 공부해놓는 것이 좋다.

 

 

도식화, 로드맵을 정말 좋아하시는 박해선님! ^^

 

 

오해하면 안된다.

"이 도서가 얼마나 인기가 좋을까요?"는 정말 이 책에 대한 것이 아니라

데이터 분석의 첫 번째 예제일 뿐이다 ^^

 

 

박해선님은 그림도 잘 그리신다~ ^^

 

 

ML/DL

머신러닝과 딥러닝이 막 알려지면서 사람들이 공부를 시작할 때에는

DS(Data Science, 데이터 과학)에 대한 영역이 대중적으로 정착되지 않았었다.

 

지금은 Data Scientist, Data Engineer 직종이 정착된 것 같다.

외부에서 만나는 많은 분들이 "저는 OO에서 데이터 사이언스로 일하고 있어요"라고 하고 있다는...

 

 

책 구성을 보면 정말 정성 가득함이 엿보인다.

 

 

이 책을 보다가 새롭게 배운 지식

 

"Data Analytics(데이터 분석) vs. Data Science(데이터 과학)"

 

 

음 ... 이 정도면 ... Full Stack ... 만능 아닌가 ?!

 

 

Summary 까지 꼼꼼하게 되어 있다.

 

 

혼자서, 또는 다같이 공부할 수 있도록 "확인 문제"도 제공해준다.

주관식은 너무 어렵다는...

 

 

직접 실습을 해볼 수 있도록 GitHub 저장소도 제공해주고, 설명도 친절히 해준다.

 

 

링크까지 꼼꼼히 제공해주는 박해선님!!!

 

 

리뷰 때문에 살펴보다가 알게된 정말 꿀팁 !!!

 

정부 주도로 진행한 데이터들일텐데,

요즘 시대에 아직도 Euc-KR 형식으로 만들어진 데이터 볼 때마다 정말 ... 에휴 ... 할말하않 !!!

 

 

 

이 책은 뭐 두말할 필요 없이 무조건 추천한다.

 

박해선님이 지은 책이라는 것 만으로도 추천하지만,

책 내용 및 책 외부적으로 제공되는 컨텐츠 모두 정말 정성 가득한 책이다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

반응형

 

최근 회사에서 Data Science 교육을 받고 있는데,

마침 그에 알맞는 책을 리뷰하게 되었다.

 

표지

 

Machine-Learning 공부할 때에도 만났었고

Data-Mining 공부할 때에도 만났었는데,

이번에 Data-Science를 공부할 때 또 만났다.

 

징그러운 베이지안 !!!

 

2판

 

초판(1판)이 2014년도에 출간 되었었는데,

2판이 8년만에 2022년 6월에 출간되었다.

 

우와~ 역사가 오래된 책이네...

그렇다는 것은, 베이지안 공부가 필요한 사람이 여전히 꾸준히 많다는 것이겠지.

 

원서의 경우에도 1판은 2013년도에 출간되었고,

2판은 2011년에 출간되었다.

 

대상

 

이 책으로 공부하기 위해서 필요한 것은 오직 "파이썬" !!!

 

목차

 

책 제목에 "베이지안"이 써있다고 해서

"베이지안"에 대해서만 설명하는 책은 아니다.

 

확률, 분포, 포아송, 의사결정분석, 로지스틱 회귀 ...

필요한 것들 다~ 있다 ^^

 

본문

 

친절한 설명과 함께 실행 결과도 예쁘게 보여준다.

 

요약

 

뒷 부분에는 친절하게 요약까지 해주고 있다.

 

연습문제

 

심지어 연습문제도 있다.

 

혼자서 공부하기에도 좋고

스터디로 진행하기에도 좋고

교재로 사용하기에도 좋다.

 

 

더더욱 멋진 것은... 책이 무료 공개되어있다.

http://allendowney.github.io/ThinkBayes2/index.html

 

eBook

 

심지어 친절하게 PDF 다운로드 링크까지도 제공해준다.

 

 

소스코드도 제공된다.

https://github.com/AllenDowney/ThinkBayes2

 

GitHub

 

솔직히 영어 부담만 없다면,

PDF보다 이렇게 노트북으로 보는게 훨씬 더 좋을 것 같다.

 

하지만, 우리는 한글을 사용하는 민족 !!!

일단 책 구매하고

제공되는 리소스들을 이용해서 훨씬 더 열심히 공부하면

몇 배 더 효율적으로 배울 수 있다 !!!

 

 

이 책 말고도

저자 Allen B. Downey님은 쓰신 책들을

무료로 제공해주고 있다.

 

Green Tea Press

https://greenteapress.com/wp/

 

 

파이썬 언어를 가지고 데이터싸이언스 공부를 하신다면

기본 교재로 추천합니다!

 

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

 

표지

 

최근 전세계적인 어려운 경제 상황에

운명처럼 만나게 된 책

 

"파이썬 기반 금융 인공지능 (Artificial Intelligence in Finance)"

 

초판 1쇄

 

받아본 책은

이제 태어난지 갖 1달 된 따끈따끈한 책이지만...

원서는 2020년에 첫 출간되었었다.

 

First Edition

 

2년이 지난 책이라 조금 아쉬움은 있지만,

그래도 이렇게 번역서가 나온 것만으로도 정말 고마운 일이다.

 


예전에 퀀트 투자 관련된 책을 살짝 살펴본 적이 있었는데

그래서인지 이 책 제목을 보고

제일 먼저 든 생각은

"이 책도 퀀트 투자 관련된 것이겠구나!"

였다.

 

 

그래서 살펴본 목차는 다음과 같다.


[PART I 기계지능]

CHAPTER 1 인공지능
CHAPTER 2 초지능

[PART II 금융과 머신러닝]

CHAPTER 3 규범적 금융
CHAPTER 4 데이터 기반 금융
CHAPTER 5 머신러닝
CHAPTER 6 인공지능 우선 금융

[PART III 통계적 비효율성]

CHAPTER 7 밀집 신경망
CHAPTER 8 재귀 신경망
CHAPTER 9 강화 학습

[PART Ⅳ 알고리즘 트레이딩]

CHAPTER 10 벡터화된 백테스팅
CHAPTER 11 리스크 관리
CHAPTER 12 집행 및 배포

[PART Ⅴ 전망]

CHAPTER 13 인공지능 경쟁
CHAPTER 14 금융 특이점

[PART Ⅵ 부록]

APPENDIX A 상호작용형 신경망
APPENDIX B 신경망 클래스
APPENDIX C 합성곱 신경망

 

 

퀀트 투자 책인 것은 맞지만,

금융 데이터들을 어떻게 AI를 활용하면 좋을지에 대해서

포커스가 맞춰진 책이다.

 

목차 설명

각 목차 앞에서는 어떤 의도로 작성되었는지,

어떤 내용인지에 대해서 설명을 먼저 해주고 있다.


정말 친절하게도 학습 플랫폼도 제공을 해주고 있다.

 

https://aiif.pqp.io/

 

학습 플랫폼

 

이메일 주소를 가지고 계정을 등록해야하는 불편함은 있다.

이메일 인증 후 로그인 하면 다음과 같은 플랫폼을 사용할 수 있다.

 

Jupyter Notebook

 

커널도 제공을 하고 있는 것 같지만,

뭔가 설정을 필요로 하는 것인지...

실제 실행을 하면 에러가 발생했다.

 

커널 에러

 

다운로드 받아서 colab에서 실행을 해보니

잘 된다.

 

colab


금융데이터를 가지고 어떻게 인공지능(AI/ML)을 이용해서

다뤄야 할지 공부할 수 있는 좋은 책이다.

 

이 책에서 다루는 라이브러리는 다음과 같은데,

 

python / scikit-learn / tensorflow / keras

 

일반적으로 많이 사용되는 라이브러리들이기에

많은 분들에게 쉽게 다가설 수 있을 것이다.

 

다만, 소스코드를 제공하는 방식이

사실 조금 불편하긴 하다.

 

본래 플랫폼까지 제공해주려는 의도인 것 같기는 하지만

그냥 GitHub로 제공을 해주고

Colab을 사용하도록 가이드하는 것이

훨씬 더 접근성이 좋지 않았을까 한다.

 

소스코드가 업데이트 된지도 2년이 되었던데,

독자적인 플랫폼 제공이 어떤 의미가 있는지는....

 

언젠가 퀀트 투자를 이용해서 용돈벌이를 할 수 있기를 꿈꾸며

여기까지 서평을 마치겠다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

+ Recent posts